These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 27397842)

  • 1. Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction.
    Ambika S; Devasena M; Nambi IM
    J Environ Manage; 2016 Oct; 181():847-855. PubMed ID: 27397842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-step removal of Hexavalent chromium and phenol using meso zerovalent iron.
    Ambika S; Devasena M; Nambi IM
    Chemosphere; 2020 Jun; 248():125912. PubMed ID: 32006826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study.
    Lee H; Lee HJ; Kim HE; Kweon J; Lee BD; Lee C
    J Hazard Mater; 2014 Jan; 265():201-7. PubMed ID: 24361799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced As(III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values.
    Katsoyiannis IA; Voegelin A; Zouboulis AI; Hug SJ
    J Hazard Mater; 2015 Oct; 297():1-7. PubMed ID: 25935405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of ibuprofen and phenol with a Fenton-like process triggered by zero-valent iron (ZVI-Fenton).
    Minella M; Bertinetti S; Hanna K; Minero C; Vione D
    Environ Res; 2019 Dec; 179(Pt A):108750. PubMed ID: 31563032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation.
    Shimizu A; Tokumura M; Nakajima K; Kawase Y
    J Hazard Mater; 2012 Jan; 201-202():60-7. PubMed ID: 22119308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synergistic effect of nickel-iron-foam and tripolyphosphate for enhancing the electro-Fenton process at circum-neutral pH.
    Deng F; Olvera-Vargas H; Garcia-Rodriguez O; Qiu S; Yang J; Lefebvre O
    Chemosphere; 2018 Jun; 201():687-696. PubMed ID: 29547857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution.
    Bae S; Hanna K
    Environ Sci Technol; 2015 Sep; 49(17):10536-43. PubMed ID: 26222146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II).
    Choi K; Lee W
    J Hazard Mater; 2012 Apr; 211-212():146-53. PubMed ID: 22079185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic study for phenol degradation by ZVI-assisted Fenton reaction and related iron corrosion investigated by X-ray absorption spectroscopy.
    Yoon IH; Yoo G; Hong HJ; Kim J; Kim MG; Choi WK; Yang JW
    Chemosphere; 2016 Feb; 145():409-15. PubMed ID: 26692518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.
    Xin J; Han J; Zheng X; Shao H; Kolditz O
    J Environ Manage; 2015 Mar; 150():420-426. PubMed ID: 25556871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfidation mitigates the passivation of zero valent iron at alkaline pHs: Experimental evidences and mechanism.
    Gu Y; Gong L; Qi J; Cai S; Tu W; He F
    Water Res; 2019 Aug; 159():233-241. PubMed ID: 31100577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pH on Fenton and Fenton-like oxidation.
    Jung YS; Lim WT; Park JY; Kim YH
    Environ Technol; 2009 Feb; 30(2):183-90. PubMed ID: 19278159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles.
    Chang MC; Kang HY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):576-82. PubMed ID: 19337920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized preparation of Ni-Fe
    Zhou B; Fan B; Gong Z; Shao S; Zhou D; Gao S
    Chemosphere; 2024 Jul; 360():142359. PubMed ID: 38782133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of 17α-ethinylestradiol by nano zero valent iron under different pH and dissolved oxygen levels.
    Karim S; Bae S; Greenwood D; Hanna K; Singhal N
    Water Res; 2017 Nov; 125():32-41. PubMed ID: 28826034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of organic compounds during the corrosion of ZVI by hydrogen peroxide at neutral pH: Kinetics, mechanisms and effect of corrosion promoting and inhibiting ions.
    Ling R; Chen JP; Shao J; Reinhard M
    Water Res; 2018 May; 134():44-53. PubMed ID: 29407650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fenton's oxidation of MTBE with zero-valent iron.
    Bergendahl JA; Thies TP
    Water Res; 2004 Jan; 38(2):327-34. PubMed ID: 14675644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfidated zero valent iron as a persulfate activator for oxidizing organophosphorus pesticides (OPPs) in aqueous solution and aged contaminated soil columns.
    Zhang P; Song D; XuejingXu ; Hao Y; Shang X; Wang C; Tang J; Sun H
    Chemosphere; 2021 Oct; 281():130760. PubMed ID: 33992847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen.
    Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Feb; 42(4):1262-7. PubMed ID: 18351103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.