These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 27398402)

  • 21. On the Materials Science of Nature's Arms Race.
    Liu Z; Zhang Z; Ritchie RO
    Adv Mater; 2018 Aug; 30(32):e1705220. PubMed ID: 29870573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silk and Silk-Like Supramolecular Materials.
    Fink TD; Zha RH
    Macromol Rapid Commun; 2018 Sep; 39(17):e1700834. PubMed ID: 29457296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advancing biomaterials of human origin for tissue engineering.
    Chen FM; Liu X
    Prog Polym Sci; 2016 Feb; 53():86-168. PubMed ID: 27022202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spidroin-Based Biomaterials in Tissue Engineering: General Approaches and Potential Stem Cell Therapies.
    Zhang Q; Li M; Hu W; Wang X; Hu J
    Stem Cells Int; 2021; 2021():7141550. PubMed ID: 34966432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining In Silico Design and Biomimetic Assembly: A New Approach for Developing High-Performance Dynamic Responsive Bio-Nanomaterials.
    Ling S; Jin K; Qin Z; Li C; Zheng K; Zhao Y; Wang Q; Kaplan DL; Buehler MJ
    Adv Mater; 2018 Oct; 30(43):e1802306. PubMed ID: 30260527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.
    Kapoor S; Kundu SC
    Acta Biomater; 2016 Feb; 31():17-32. PubMed ID: 26602821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships.
    Gronau G; Krishnaji ST; Kinahan ME; Giesa T; Wong JY; Kaplan DL; Buehler MJ
    Biomaterials; 2012 Nov; 33(33):8240-55. PubMed ID: 22938765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design.
    Rim NG; Roberts EG; Ebrahimi D; Dinjaski N; Jacobsen MM; Martín-Moldes Z; Buehler MJ; Kaplan DL; Wong JY
    ACS Biomater Sci Eng; 2017 Aug; 3(8):1542-1556. PubMed ID: 28966980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulating the Mechanical Performance of Macroscale Fibers through Shear-Induced Alignment and Assembly of Protein Nanofibrils.
    Kamada A; Levin A; Toprakcioglu Z; Shen Y; Lutz-Bueno V; Baumann KN; Mohammadi P; Linder MB; Mezzenga R; Knowles TPJ
    Small; 2020 Mar; 16(9):e1904190. PubMed ID: 31595701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silk-Based Biomaterials for Designing Bioinspired Microarchitecture for Various Biomedical Applications.
    Kumar Sahi A; Gundu S; Kumari P; Klepka T; Sionkowska A
    Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36810386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How protein materials balance strength, robustness, and adaptability.
    Buehler MJ; Yung YC
    HFSP J; 2010 Feb; 4(1):26-40. PubMed ID: 20676305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-strength and ultra-tough supramolecular polyamide spider silk fibers assembled via specific covalent and reversible hydrogen bonds.
    Mi J; Li X; Niu S; Zhou X; Lu Y; Yang Y; Sun Y; Meng Q
    Acta Biomater; 2024 Mar; 176():190-200. PubMed ID: 38199426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs.
    Huang W; Restrepo D; Jung JY; Su FY; Liu Z; Ritchie RO; McKittrick J; Zavattieri P; Kisailus D
    Adv Mater; 2019 Oct; 31(43):e1901561. PubMed ID: 31268207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein mechanics: from single molecules to functional biomaterials.
    Li H; Cao Y
    Acc Chem Res; 2010 Oct; 43(10):1331-41. PubMed ID: 20669937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Artificial structural proteins: Synthesis, assembly and material applications.
    Li M; Li J; Liu K; Zhang H
    Bioorg Chem; 2024 Mar; 144():107162. PubMed ID: 38308999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlinear material behaviour of spider silk yields robust webs.
    Cranford SW; Tarakanova A; Pugno NM; Buehler MJ
    Nature; 2012 Feb; 482(7383):72-6. PubMed ID: 22297972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein composites from silkworm cocoons as versatile biomaterials.
    Wang F; Guo C; Yang Q; Li C; Zhao P; Xia Q; Kaplan DL
    Acta Biomater; 2021 Feb; 121():180-192. PubMed ID: 33249226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchical Structure of Silk Materials Versus Mechanical Performance and Mesoscopic Engineering Principles.
    Qiu W; Patil A; Hu F; Liu XY
    Small; 2019 Dec; 15(51):e1903948. PubMed ID: 31657136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sustainable Bombyx mori's silk fibroin for biomedical applications as a molecular biotechnology challenge: A review.
    Bitar L; Isella B; Bertella F; Bettker Vasconcelos C; Harings J; Kopp A; van der Meer Y; Vaughan TJ; Bortesi L
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130374. PubMed ID: 38408575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.