These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27398511)

  • 1. InN Quantum Dot Based Infra-Red Photodetectors.
    Shetty A; Kumar M; Roull B; Vinoy KJ; Krupanidhj SB
    J Nanosci Nanotechnol; 2016 Jan; 16(1):709-14. PubMed ID: 27398511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and Temperature Effect of InN Nanodots by PA-MBE via Droplet Epitaxy Technique.
    Chen HJ; Yang DL; Huang TW; Yu IS
    Nanoscale Res Lett; 2016 Dec; 11(1):241. PubMed ID: 27142879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet epitaxy of InGaN quantum dots on Si (111) by plasma-assisted molecular beam epitaxy.
    Nurzal N; Hsu TY; Susanto I; Yu IS
    Discov Nano; 2023 Apr; 18(1):60. PubMed ID: 37382746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of surface morphology control and investigation of hexagonal indium nitride nanorods grown on GaN/sapphire substrate.
    Kuo SY; Chen WC; Lai FI; Lin WT; Wang HY; Hsiao CN
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1620-3. PubMed ID: 22630014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of spherical-shaped GaN and InN quantum dots on curved SiN/Si surface.
    Choi I; Lee H; Lee CR; Jeong KU; Kim JS
    Nanotechnology; 2018 Aug; 29(31):315603. PubMed ID: 29749963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth Mechanism and Properties of Self-Assembled InN Nanocolumns on Al Covered Si(111) Substrates by PA-MBE.
    Casallas-Moreno YL; Gallardo-Hernández S; Yee-Rendón CM; Ramírez-López M; Guillén-Cervantes A; Arias-Cerón JS; Huerta-Ruelas J; Santoyo-Salazar J; Mendoza-Álvarez JG; López-López M
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31574912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling the polarity of InN quantum dots using a modified approach of negative-spherical-aberration imaging.
    Rajak P; Islam M; Jiménez JJ; Mánuel JM; Aseev P; Gačević Ž; Calleja E; García R; Morales FM; Bhattacharyya S
    Nanoscale; 2019 Jul; 11(28):13632-13638. PubMed ID: 31290894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-Plane Anisotropic Photoconduction in Nonpolar Epitaxial a-Plane GaN.
    Pant R; Shetty A; Chandan G; Roul B; Nanda KK; Krupanidhi SB
    ACS Appl Mater Interfaces; 2018 May; 10(19):16918-16923. PubMed ID: 29707943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport and infrared photoresponse properties of InN nanorods/Si heterojunction.
    Kumar M; Bhat TN; Rajpalke MK; Roul B; Kalghatgi AT; Krupanidhi SB
    Nanoscale Res Lett; 2011 Nov; 6(1):609. PubMed ID: 22122843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MBE-grown Si and Si(1-x)Ge(x) quantum dots embedded within epitaxial Gd2O3 on Si(111) substrate for floating gate memory device.
    Manna S; Aluguri R; Katiyar A; Das S; Laha A; Osten HJ; Ray SK
    Nanotechnology; 2013 Dec; 24(50):505709. PubMed ID: 24284782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy.
    Fan D; Li S; Kang N; Caroff P; Wang LB; Huang YQ; Deng MT; Yu CL; Xu HQ
    Nanoscale; 2015 Sep; 7(36):14822-8. PubMed ID: 26308470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel narrow band-gap InAsSbP-based quantum dot mid-infrared photodetectors: fabrication, optoelectronic and electrophysical properties.
    Harutyunyan V; Gambaryan K; Aroutiounian V
    J Nanosci Nanotechnol; 2013 Feb; 13(2):799-803. PubMed ID: 23646518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting photoresponse in silicon metal-semiconductor-metal photodetector using semiconducting quantum dots.
    Biswas C; Kim Y; Lee YH
    Sci Rep; 2016 Nov; 6():37857. PubMed ID: 27886274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular beam epitaxial growth and characterization of catalyst-free InN/InxGa1-xN core/shell nanowire heterostructures on Si(111) substrates.
    Cui K; Fathololoumi S; Golam Kibria M; Botton GA; Mi Z
    Nanotechnology; 2012 Mar; 23(8):085205. PubMed ID: 22293649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates.
    Bru-Chevallier C; El Akra A; Pelloux-Gervais D; Dumont H; Canut B; Chauvin N; Regreny P; Gendry M; Patriarche G; Jancu JM; Even J; Noe P; Calvo V; Salem B
    J Nanosci Nanotechnol; 2011 Oct; 11(10):9153-9. PubMed ID: 22400316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of germanium-silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces.
    Lozovoy K; Kokhanenko A; Voitsekhovskii A
    Nanotechnology; 2018 Feb; 29(5):054002. PubMed ID: 29303114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-insulator-semiconductor photodetectors.
    Lin CH; Liu CW
    Sensors (Basel); 2010; 10(10):8797-826. PubMed ID: 22163382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near infrared electroluminescence of ZnMgO/InN core-shell nanorod heterostructures grown on Si substrate.
    Wu G; Zheng W; Gao F; Yang H; Zhao Y; Yin J; Zheng W; Li W; Zhang B; Du G
    Phys Chem Chem Phys; 2016 Jul; 18(30):20812-8. PubMed ID: 27418413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoluminescence and photocurrent from InP nanowires with InAsP quantum dots grown on Si by molecular beam epitaxy.
    Kuyanov P; LaPierre RR
    Nanotechnology; 2015 Aug; 26(31):315202. PubMed ID: 26177614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. InN-based heterojunction photodetector with extended infrared response.
    Hsu LH; Kuo CT; Huang JK; Hsu SC; Lee HY; Kuo HC; Lee PT; Tsai YL; Hwang YC; Su CF; He JH; Lin SY; Cheng YJ; Lin CC
    Opt Express; 2015 Nov; 23(24):31150-62. PubMed ID: 26698744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.