BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27398534)

  • 21. 3,4-Phenylenedioxythiophene (PheDOT) Based Hole-Transporting Materials for Perovskite Solar Cells.
    Chen J; Chen BX; Zhang FS; Yu HJ; Ma S; Kuang DB; Shao G; Su CY
    Chem Asian J; 2016 Apr; 11(7):1043-9. PubMed ID: 26840766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organohalide Perovskites for Solar Energy Conversion.
    Lin Q; Armin A; Burn PL; Meredith P
    Acc Chem Res; 2016 Mar; 49(3):545-53. PubMed ID: 26863507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electron-Selective Contact.
    Collavini S; Kosta I; Völker SF; Cabanero G; Grande HJ; Tena-Zaera R; Delgado JL
    ChemSusChem; 2016 Jun; 9(11):1263-70. PubMed ID: 26991031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modified Fullerenes for Efficient Electron Transport Layer-Free Perovskite/Fullerene Blend-Based Solar Cells.
    Sandoval-Torrientes R; Pascual J; García-Benito I; Collavini S; Kosta I; Tena-Zaera R; Martín N; Delgado JL
    ChemSusChem; 2017 May; 10(9):2023-2029. PubMed ID: 28296265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Room-Temperature Atomic Layer Deposition of Al
    Kot M; Das C; Wang Z; Henkel K; Rouissi Z; Wojciechowski K; Snaith HJ; Schmeisser D
    ChemSusChem; 2016 Dec; 9(24):3401-3406. PubMed ID: 27925444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency.
    Ameen S; Rub MA; Kosa SA; Alamry KA; Akhtar MS; Shin HS; Seo HK; Asiri AM; Nazeeruddin MK
    ChemSusChem; 2016 Jan; 9(1):10-27. PubMed ID: 26692567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells.
    Chiang YH; Cheng HM; Li MH; Guo TF; Chen P
    ChemSusChem; 2016 Sep; 9(18):2620-2627. PubMed ID: 27530767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of Hybrid Perovskite Fabrication Methods on Film Formation, Electronic Structure, and Solar Cell Performance.
    Schnier T; Emara J; Olthof S; Meerholz K
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnesium-doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells.
    Song J; Zheng E; Liu L; Wang XF; Chen G; Tian W; Miyasaka T
    ChemSusChem; 2016 Sep; 9(18):2640-2647. PubMed ID: 27510561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives.
    Yu Y; Wang C; Grice CR; Shrestha N; Chen J; Zhao D; Liao W; Cimaroli AJ; Roland PJ; Ellingson RJ; Yan Y
    ChemSusChem; 2016 Dec; 9(23):3288-3297. PubMed ID: 27783456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchically Structured Hole Transport Layers of Spiro-OMeTAD and Multiwalled Carbon Nanotubes for Perovskite Solar Cells.
    Lee J; Menamparambath MM; Hwang JY; Baik S
    ChemSusChem; 2015 Jul; 8(14):2358-62. PubMed ID: 26013428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zr Incorporation into TiO2 Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells while Increasing Carrier Lifetimes.
    Nagaoka H; Ma F; deQuilettes DW; Vorpahl SM; Glaz MS; Colbert AE; Ziffer ME; Ginger DS
    J Phys Chem Lett; 2015 Feb; 6(4):669-75. PubMed ID: 26262483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient and Stable Vacuum-Free-Processed Perovskite Solar Cells Enabled by a Robust Solution-Processed Hole Transport Layer.
    Chang CY; Tsai BC; Hsiao YC
    ChemSusChem; 2017 May; 10(9):1981-1988. PubMed ID: 28334500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Planar Heterojunction Perovskite Solar Cells Incorporating Metal-Organic Framework Nanocrystals.
    Chang TH; Kung CW; Chen HW; Huang TY; Kao SY; Lu HC; Lee MH; Boopathi KM; Chu CW; Ho KC
    Adv Mater; 2015 Nov; 27(44):7229-35. PubMed ID: 26444686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.
    Nejand BA; Ahmadi V; Gharibzadeh S; Shahverdi HR
    ChemSusChem; 2016 Feb; 9(3):302-13. PubMed ID: 26748959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low Temperature Solution-Processed Sb:SnO
    Bai Y; Fang Y; Deng Y; Wang Q; Zhao J; Zheng X; Zhang Y; Huang J
    ChemSusChem; 2016 Sep; 9(18):2686-2691. PubMed ID: 27561644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.
    Lee KT; Guo LJ; Park HJ
    Molecules; 2016 Apr; 21(4):475. PubMed ID: 27077835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells.
    Haruyama J; Sodeyama K; Han L; Tateyama Y
    Acc Chem Res; 2016 Mar; 49(3):554-61. PubMed ID: 26901120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lead methylammonium triiodide perovskite-based solar cells: an interfacial charge-transfer investigation.
    Xu X; Zhang H; Cao K; Cui J; Lu J; Zeng X; Shen Y; Wang M
    ChemSusChem; 2014 Nov; 7(11):3088-94. PubMed ID: 25213607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Influence of Water Vapor on the Stability and Processing of Hybrid Perovskite Solar Cells Made from Non-Stoichiometric Precursor Mixtures.
    Petrus ML; Hu Y; Moia D; Calado P; Leguy AM; Barnes PR; Docampo P
    ChemSusChem; 2016 Sep; 9(18):2699-2707. PubMed ID: 27624589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.