These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 27398556)
1. Study of Self-Induced Growth of AlGaAs Nanoneedles on Silicon Substrates Using Metal Organic Chemical Vapor Deposition Technique. Bag RK; Singh S; Tyagi R; Pandya DK; Singh R J Nanosci Nanotechnol; 2016 Jan; 16(1):973-80. PubMed ID: 27398556 [TBL] [Abstract][Full Text] [Related]
2. Growth of aluminum catalyzed AlGaAs nanowires on silicon substrate. Bag RK; Mohan P; Singh S; Kumar A; Tyagi R; Pandya DK; Singh R J Nanosci Nanotechnol; 2013 Mar; 13(3):1899-902. PubMed ID: 23755616 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and characterization of ZnO nanoneedle array using metal organic chemical vapor deposition. Park D; Tak Y; Yong K J Nanosci Nanotechnol; 2008 Feb; 8(2):623-7. PubMed ID: 18464381 [TBL] [Abstract][Full Text] [Related]
4. Catalyst-free selective-area epitaxy of GaAs nanowires by metal-organic chemical vapor deposition using triethylgallium. Kim H; Ren D; Farrell AC; Huffaker DL Nanotechnology; 2018 Feb; 29(8):085601. PubMed ID: 29300185 [TBL] [Abstract][Full Text] [Related]
5. Self-catalytic and selective growth of ZnO nanoneedles by micro-contact printing and CVD. Lee SS; Kim HJ; Sung K; Lee YK; Chung TM; Kim CG; An KS J Nanosci Nanotechnol; 2008 Jul; 8(7):3561-4. PubMed ID: 19051911 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamics of the Vapor-Liquid-Solid Growth of Ternary III-V Nanowires in the Presence of Silicon. Hijazi H; Zeghouane M; Dubrovskii VG Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401772 [TBL] [Abstract][Full Text] [Related]
7. The structure and growth mechanism of Si nanoneedles prepared by plasma-enhanced chemical vapor deposition. Cervenka J; Ledinský M; Stuchlík J; Stuchlíková H; Bakardjieva S; Hruska K; Fejfar A; Kocka J Nanotechnology; 2010 Oct; 21(41):415604. PubMed ID: 20844323 [TBL] [Abstract][Full Text] [Related]
8. Effects of experimental conditions on the morphologies, structures and growth modes of pulsed laser-deposited CdS nanoneedles. Li H; Chen L; Zhao Y; Liu X; Guan L; Sun J; Wu J; Xu N Nanoscale Res Lett; 2014 Feb; 9(1):91. PubMed ID: 24559455 [TBL] [Abstract][Full Text] [Related]
9. Impact of Al Pre-Deposition Layer on Crystalline Quality of GaN Grown on Si(111) Substrates. Lee SJ; Jeon SR; Ju JW; Baek JH; Su J; Lee SM; Lee DS; Lee CR J Nanosci Nanotechnol; 2019 Feb; 19(2):892-896. PubMed ID: 30360168 [TBL] [Abstract][Full Text] [Related]
10. Self-assembled perpendicular growth of organic nanoneedles via simple vapor-phase deposition: one-step fabrication of a superhydrophobic surface. Chung JW; An BK; Kim JW; Kim JJ; Park SY Chem Commun (Camb); 2008 Jul; (26):2998-3000. PubMed ID: 18688327 [TBL] [Abstract][Full Text] [Related]
11. Growth and characterization of zinc oxide nanoneedles. Kumari P; Roy SS; McLaughlin J J Nanosci Nanotechnol; 2009 Jul; 9(7):4367-70. PubMed ID: 19916458 [TBL] [Abstract][Full Text] [Related]
12. Theory of MOCVD Growth of III-V Nanowires on Patterned Substrates. Dubrovskii VG Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957064 [TBL] [Abstract][Full Text] [Related]
13. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700 [TBL] [Abstract][Full Text] [Related]
14. Growth of TiO2 anti-reflection layer on textured Si (100) wafer substrate by metal-organic chemical vapor deposition method. Nam SH; Choi JW; Cho SJ; Kimt KS; Boo JH J Nanosci Nanotechnol; 2011 Aug; 11(8):7315-8. PubMed ID: 22103185 [TBL] [Abstract][Full Text] [Related]
15. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates. Bhatta UM; Rath A; Dash JK; Ghatak J; Yi-Feng L; Liu CP; Satyam PV Nanotechnology; 2009 Nov; 20(46):465601. PubMed ID: 19843987 [TBL] [Abstract][Full Text] [Related]
16. Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process. Ishiyama T; Nakagawa S; Wakamatsu T Sci Rep; 2016 Jul; 6():30608. PubMed ID: 27465800 [TBL] [Abstract][Full Text] [Related]
17. Facile Five-Step Heteroepitaxial Growth of GaAs Nanowires on Silicon Substrates and the Twin Formation Mechanism. Yao M; Sheng C; Ge M; Chi CY; Cong S; Nakano A; Dapkus PD; Zhou C ACS Nano; 2016 Feb; 10(2):2424-35. PubMed ID: 26831573 [TBL] [Abstract][Full Text] [Related]
18. Realization and manipulation of ZnO nanorod arrays on sapphire substrates using a catalyst-free metalorganic chemical vapor deposition technique. Wu CC; Wu DS; Lin PR; Chen TN; Horng RH J Nanosci Nanotechnol; 2010 May; 10(5):3001-11. PubMed ID: 20358892 [TBL] [Abstract][Full Text] [Related]
19. Preferentially grown ultranano c-diamond and n-diamond grains on silicon nanoneedles from energetic species with enhanced field-emission properties. Thomas JP; Chen HC; Tseng SH; Wu HC; Lee CY; Cheng HF; Tai NH; Lin IN ACS Appl Mater Interfaces; 2012 Oct; 4(10):5103-8. PubMed ID: 23016635 [TBL] [Abstract][Full Text] [Related]
20. Controllable growth of laterally aligned zinc oxide nanorod arrays on a selected surface of the silicon substrate by a catalyst-free vapor solid process--a technique for growing nanocircuits. Lu W; Jiang C; Caudle D; Tang C; Sun Q; Xu J; Song J Phys Chem Chem Phys; 2013 Aug; 15(32):13532-7. PubMed ID: 23824182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]