These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27398568)

  • 1. Scaffolds Containing Spirulina sp. LEB 18 Biomass: Development, Characterization and Evaluation of In Vitro Biodegradation.
    Schmatz DA; Uebel Lda S; Kuntzler SG; Dora CL; Costa JA; de Morais MG
    J Nanosci Nanotechnol; 2016 Jan; 16(1):1050-9. PubMed ID: 27398568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new biomaterial of nanofibers with the microalga Spirulina as scaffolds to cultivate with stem cells for use in tissue engineering.
    Steffens D; Lersch M; Rosa A; Scher C; Crestani T; Morais MG; Costa JA; Pranke P
    J Biomed Nanotechnol; 2013 Apr; 9(4):710-8. PubMed ID: 23621033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a colorimetric pH indicator using nanofibers containing Spirulina sp. LEB 18.
    Kuntzler SG; Costa JAV; Brizio APDR; Morais MG
    Food Chem; 2020 Oct; 328():126768. PubMed ID: 32470772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: A novel nanomaterial with antibacterial activity.
    Kuntzler SG; Almeida ACA; Costa JAV; Morais MG
    Int J Biol Macromol; 2018 Jul; 113():1008-1014. PubMed ID: 29505877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Poly(
    Morouço P; Biscaia S; Viana T; Franco M; Malça C; Mateus A; Moura C; Ferreira FC; Mitchell G; Alves NM
    Biomed Res Int; 2016; 2016():1596157. PubMed ID: 27872844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of nanofibers containing the microalga Spirulina (Arthrospira).
    de Morais MG; Stillings C; Dersch R; Rudisile M; Pranke P; Costa JA; Wendorff J
    Bioresour Technol; 2010 Apr; 101(8):2872-6. PubMed ID: 20056537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M; Bahrami SH
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage.
    Ranjbar-Mohammadi M; Prabhakaran MP; Bahrami SH; Ramakrishna S
    Carbohydr Polym; 2016 Apr; 140():104-12. PubMed ID: 26876833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospinning of Biosyn(®)-based tubular conduits: structural, morphological, and mechanical characterizations.
    Thomas V; Donahoe T; Nyairo E; Dean DR; Vohra YK
    Acta Biomater; 2011 May; 7(5):2070-9. PubMed ID: 21232639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications.
    Gungor-Ozkerim PS; Balkan T; Kose GT; Sarac AS; Kok FN
    J Biomed Mater Res A; 2014 Jun; 102(6):1897-908. PubMed ID: 23852885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofunctionalized nanofibers using Arthrospira (Spirulina) biomass and biopolymer.
    de Morais MG; Stillings C; Dersch R; Rudisile M; Pranke P; Costa JA; Wendorff J
    Biomed Res Int; 2015; 2015():967814. PubMed ID: 25667931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based nanofibrous scaffolds to support functional esophageal epithelial cells towards engineering the esophagus.
    Kuppan P; Sethuraman S; Krishnan UM
    J Biomater Sci Polym Ed; 2014; 25(6):574-93. PubMed ID: 24502395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evaluation of the effects of electrospun PCL nanofiber mats containing the microalgae Spirulina (Arthrospira) extract on primary astrocytes.
    Kim SH; Shin C; Min SK; Jung SM; Shin HS
    Colloids Surf B Biointerfaces; 2012 Feb; 90():113-8. PubMed ID: 22056085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of Nanofibers Containing the Bioactive Compound C-Phycocyanin.
    Figueira Fda S; Gettens JG; Costa JA; de Morais MG; Moraes CC; Kalil SJ
    J Nanosci Nanotechnol; 2016 Jan; 16(1):944-9. PubMed ID: 27398551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds.
    Jeong SI; Lee AY; Lee YM; Shin H
    J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties.
    Fadaie M; Mirzaei E; Geramizadeh B; Asvar Z
    Carbohydr Polym; 2018 Nov; 199():628-640. PubMed ID: 30143171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a new nanofiber scaffold for use with stem cells in a third degree burn animal model.
    Steffens D; Leonardi D; Soster PR; Lersch M; Rosa A; Crestani T; Scher C; de Morais MG; Costa JA; Pranke P
    Burns; 2014 Dec; 40(8):1650-60. PubMed ID: 24794225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.