These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 27398568)
21. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility. Zhijiang C; Yi X; Haizheng Y; Jia J; Liu Y Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():757-67. PubMed ID: 26478369 [TBL] [Abstract][Full Text] [Related]
22. Biological effects of Spirulina (Arthrospira) biopolymers and biomass in the development of nanostructured scaffolds. de Morais MG; Vaz Bda S; de Morais EG; Costa JA Biomed Res Int; 2014; 2014():762705. PubMed ID: 25157367 [TBL] [Abstract][Full Text] [Related]
23. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133 [TBL] [Abstract][Full Text] [Related]
24. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706 [TBL] [Abstract][Full Text] [Related]
26. Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration. Veleirinho B; Coelho DS; Dias PF; Maraschin M; Ribeiro-do-Valle RM; Lopes-da-Silva JA Int J Biol Macromol; 2012 Nov; 51(4):343-50. PubMed ID: 22652216 [TBL] [Abstract][Full Text] [Related]
27. Investigation of the batch-to-batch inconsistencies of Collagen in PCL-Collagen nanofibers. Dippold D; Cai A; Hardt M; Boccaccini AR; Horch RE; Beier JP; Schubert DW Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():217-225. PubMed ID: 30573244 [TBL] [Abstract][Full Text] [Related]
28. Astrocyte behavior and GFAP expression on Spirulina extract-incorporated PCL nanofiber. Min SK; Kim CR; Jung SM; Shin HS J Biomed Mater Res A; 2013 Dec; 101(12):3467-73. PubMed ID: 23595976 [TBL] [Abstract][Full Text] [Related]
29. Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes. Zarekhalili Z; Bahrami SH; Ranjbar-Mohammadi M; Milan PB Int J Biol Macromol; 2017 Jan; 94(Pt A):679-690. PubMed ID: 27777080 [TBL] [Abstract][Full Text] [Related]
30. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications. Abdal-Hay A; Hussein KH; Casettari L; Khalil KA; Hamdy AS Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():143-150. PubMed ID: 26706517 [TBL] [Abstract][Full Text] [Related]
31. Degradation Behavior of 3D Porous Polydioxanone-b-Polycaprolactone Scaffolds Fabricated Using the Melt-Molding Particulate-Leaching Method. Oh SH; Park SC; Kim HK; Koh YJ; Lee JH; Lee MC; Lee JH J Biomater Sci Polym Ed; 2011; 22(1-3):225-37. PubMed ID: 20557697 [TBL] [Abstract][Full Text] [Related]
32. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
33. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Ramier J; Bouderlique T; Stoilova O; Manolova N; Rashkov I; Langlois V; Renard E; Albanese P; Grande D Mater Sci Eng C Mater Biol Appl; 2014 May; 38():161-9. PubMed ID: 24656364 [TBL] [Abstract][Full Text] [Related]
34. Three-dimensional pore structure analysis of polycaprolactone nano-microfibrous scaffolds using theoretical and experimental approaches. Bagherzadeh R; Latifi M; Kong L J Biomed Mater Res A; 2014 Mar; 102(3):903-10. PubMed ID: 23554325 [TBL] [Abstract][Full Text] [Related]
35. Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility. Bolaina-Lorenzo E; Martínez-Ramos C; Monleón-Pradas M; Herrera-Kao W; Cauich-Rodríguez JV; Cervantes-Uc JM Biomed Mater; 2016 Dec; 12(1):015008. PubMed ID: 27934786 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of electrospinning parameters on the tensile strength and suture retention strength of polycaprolactone nanofibrous scaffolds through surface response methodology. Asvar Z; Mirzaei E; Azarpira N; Geramizadeh B; Fadaie M J Mech Behav Biomed Mater; 2017 Nov; 75():369-378. PubMed ID: 28802205 [TBL] [Abstract][Full Text] [Related]
37. Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application. Ranjbar-Mohammadi M; Bahrami SH Int J Biol Macromol; 2016 Mar; 84():448-56. PubMed ID: 26706845 [TBL] [Abstract][Full Text] [Related]
38. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
39. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
40. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Entekhabi E; Haghbin Nazarpak M; Moztarzadeh F; Sadeghi A Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():380-7. PubMed ID: 27612726 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]