These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27398585)

  • 21. Greatly enhanced hole collection of MoO
    Lei Q; Xu X; Lu N; Yang L; He S
    RSC Adv; 2022 Jul; 12(33):21482-21492. PubMed ID: 35975077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The enhanced efficiency of graphene-silicon solar cells by electric field doping.
    Yu X; Yang L; Lv Q; Xu M; Chen H; Yang D
    Nanoscale; 2015 Apr; 7(16):7072-7. PubMed ID: 25588162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of solution-processed niO thin film as a hole transport layer in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction solar cells.
    Jung J; Oh SH; Yoon DH; Kim HJ
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1165-9. PubMed ID: 22629913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.
    Hsieh PY; Lee CY; Tai NH
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4624-32. PubMed ID: 26815945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorus Catalytic Doping on Intrinsic Silicon Thin Films for the Application in Silicon Heterojunction Solar Cells.
    Liu Y; Pomaska M; Duan W; Qiu D; Li S; Lambertz A; Gad A; Breuer U; Finger F; Rau U; Ding K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56615-56621. PubMed ID: 33263985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced solar energy conversion in Au-doped, single-wall carbon nanotube-Si heterojunction cells.
    Chen L; He H; Zhang S; Xu C; Zhao J; Zhao S; Mi Y; Yang D
    Nanoscale Res Lett; 2013 May; 8(1):225. PubMed ID: 23663755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organic photovoltaic devices based on an acceptor of solution-processable functionalized graphene.
    Wang J; Wang Y; He D; Wu H; Wang H; Zhou P; Fu M; Jiang K; Chen W
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9432-8. PubMed ID: 22413224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study.
    Agresti A; Pescetelli S; Taheri B; Del Rio Castillo AE; Cinà L; Bonaccorso F; Di Carlo A
    ChemSusChem; 2016 Sep; 9(18):2609-2619. PubMed ID: 27629238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystalline Fraction and Doping Concentration Effect on Heterojunction Solar Cells n-Doped µc-Si:H Back Surface Field Layer.
    Kim S; Shin C; Balaji N; Yi J
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2294-9. PubMed ID: 26413655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bi2S3microspheres grown on graphene sheets as low-cost counter-electrode materials for dye-sensitized solar cells.
    Li G; Chen X; Gao G
    Nanoscale; 2014 Mar; 6(6):3283-8. PubMed ID: 24509629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells.
    Liu Z; Li J; Sun ZH; Tai G; Lau SP; Yan F
    ACS Nano; 2012 Jan; 6(1):810-8. PubMed ID: 22148872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.
    Etgar L; Gao P; Xue Z; Peng Q; Chandiran AK; Liu B; Nazeeruddin MK; Grätzel M
    J Am Chem Soc; 2012 Oct; 134(42):17396-9. PubMed ID: 23043296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance degradation of c-Si solar cells under UV exposure.
    Kim H; Choi P; Kim K; Kuh H; Beak D; Lee J; Yi J; Choi B
    J Nanosci Nanotechnol; 2014 May; 14(5):3561-3. PubMed ID: 24734588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells.
    Ye Y; Gan L; Dai L; Dai Y; Guo X; Meng H; Yu B; Shi Z; Shang K; Qin G
    Nanoscale; 2011 Apr; 3(4):1477-81. PubMed ID: 21359405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CH₃NH₃PbI₃-based planar solar cells with magnetron-sputtered nickel oxide.
    Cui J; Meng F; Zhang H; Cao K; Yuan H; Cheng Y; Huang F; Wang M
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22862-70. PubMed ID: 25426540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing Photovoltaic Performance of Inverted Planar Perovskite Solar Cells by Cobalt-Doped Nickel Oxide Hole Transport Layer.
    Xie Y; Lu K; Duan J; Jiang Y; Hu L; Liu T; Zhou Y; Hu B
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14153-14159. PubMed ID: 29620861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Series circuit of organic thin-film solar cells for conversion of water into hydrogen.
    Aoki A; Naruse M; Abe T
    Chemphyschem; 2013 Jul; 14(10):2317-20. PubMed ID: 23671012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of NiO
    Kim SK; Seok HJ; Kim DH; Choi DH; Nam SJ; Kim SC; Kim HK
    RSC Adv; 2020 Nov; 10(71):43847-43852. PubMed ID: 35519689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current enhancement of aluminum doped ZnO/n-Si isotype heterojunction solar cells by embedding silver nanoparticles.
    Yun J; Kim J; Kojori HS; Kim SJ; Tong C; Anderson WA
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5547-51. PubMed ID: 23882792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solvent-Assisted Preparation of High-Performance Mesoporous CH₃NH₃Pbl₃ Perovskite Solar Cells.
    Li ZH; Liu J; Ma JY; Jiang Y; Ge QQ; Ding J; Hu JS; Wan LJ
    J Nanosci Nanotechnol; 2016 Jan; 16(1):844-50. PubMed ID: 27398534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.