These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 27398713)

  • 1. Molecular Dynamics Simulation of the Crystal Nucleation and Growth Behavior of Methane Hydrate in the Presence of the Surface and Nanopores of Porous Sediment.
    Yan KF; Li XS; Chen ZY; Xia ZM; Xu CG; Zhang Z
    Langmuir; 2016 Aug; 32(31):7975-84. PubMed ID: 27398713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of marine environments on methane hydrate formation in clay nanopores: A molecular dynamics study.
    Mi F; He Z; Jiang G; Ning F
    Sci Total Environ; 2022 Dec; 852():158454. PubMed ID: 36063931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Layer-Charge Distribution of 2:1 Clay Minerals on Methane Hydrate Formation: A Molecular Dynamics Simulation Study.
    Li Y; Chen M; Liu C; Song H; Yuan P; Zhang B; Liu D; Du P
    Langmuir; 2020 Apr; 36(13):3323-3335. PubMed ID: 32109063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of surface property of mixed clays on methane hydrate formation in nanopores: A molecular dynamics study.
    Mi F; He Z; Zhao Y; Jiang G; Ning F
    J Colloid Interface Sci; 2022 Dec; 627():681-691. PubMed ID: 35882088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation of the intercalation behaviors of methane hydrate in montmorillonite.
    Yan K; Li X; Xu C; Lv Q; Ruan X
    J Mol Model; 2014 Jun; 20(6):2311. PubMed ID: 24906646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Electric Field on Gas Hydrate Nucleation Kinetics: Evidence for the Enhanced Kinetics of Hydrate Nucleation by Negatively Charged Clay Surfaces.
    Park T; Kwon TH
    Environ Sci Technol; 2018 Mar; 52(5):3267-3274. PubMed ID: 29397706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of nucleation of methane hydrate crystals: Interfacial theory and molecular simulation.
    Mirzaeifard S; Servio P; Rey AD
    J Colloid Interface Sci; 2019 Dec; 557():556-567. PubMed ID: 31550648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.
    Zhang Z; Guo GJ
    Phys Chem Chem Phys; 2017 Jul; 19(29):19496-19505. PubMed ID: 28719672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does Confinement Enable Methane Hydrate Growth at Low Pressures? Insights from Molecular Dynamics Simulations.
    Yu KB; Yazaydin AO
    J Phys Chem C Nanomater Interfaces; 2020 May; 124(20):11015-11022. PubMed ID: 32582402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CH
    He Z; Linga P; Jiang J
    Langmuir; 2017 Oct; 33(43):11956-11967. PubMed ID: 28991480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.
    Sujith KS; Ramachandran CN
    J Phys Chem B; 2017 Jan; 121(1):153-163. PubMed ID: 27935719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CH
    Guo Y; Xiao W; Pu W; Hu J; Zhao J; Zhang L
    Langmuir; 2018 Aug; 34(34):10181-10186. PubMed ID: 30070854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing spatially and temporally visualized formation behavior of methane hydrate in unconsolidated porous media.
    Zhang L; Sun L; Sun M; Lv X; Dong H; Miao Y; Yang L; Song Y; Zhao J
    Magn Reson Imaging; 2019 Sep; 61():224-230. PubMed ID: 31170430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Hydrate Inhibition of Natural Gels in Complex Sediment Environments.
    Wang J; Sun J; Bian H; Wang Q; Feng Z; Lu C; Ren H; Cheng R; Wang J; Wang R
    Gels; 2022 Nov; 8(12):. PubMed ID: 36547282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced phase stability and faster formation/dissociation kinetics in confined methane hydrate.
    Jin D; Coasne B
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways.
    Zhang Z; Walsh MR; Guo GJ
    Phys Chem Chem Phys; 2015 Apr; 17(14):8870-6. PubMed ID: 25743115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleation rate analysis of methane hydrate from molecular dynamics simulations.
    Yuhara D; Barnes BC; Suh D; Knott BC; Beckham GT; Yasuoka K; Wu DT; Sum AK
    Faraday Discuss; 2015; 179():463-74. PubMed ID: 25876773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promotion of Activated Carbon on the Nucleation and Growth Kinetics of Methane Hydrates.
    Zhang G; Shi X; Zhang R; Chao K; Wang F
    Front Chem; 2020; 8():526101. PubMed ID: 33134268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dataset on investigating nucleation and growth kinetics of methane hydrate in aqueous methanol solutions.
    Semenov AP; Tulegenov TB; Mendgaziev RI; Stoporev AS; Istomin VA; Sergeeva DV; Lednev DA; Vinokurov VA
    Data Brief; 2024 Jun; 54():110517. PubMed ID: 38847010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide induced bubble formation in a CH4-CO2-H2O ternary system: a molecular dynamics simulation study.
    Sujith KS; Ramachandran CN
    Phys Chem Chem Phys; 2016 Feb; 18(5):3746-54. PubMed ID: 26762545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.