These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2739882)

  • 41. Similar potencies of CCK-8 and its analogue BOC(Nle28;Nle31)CCK27-33 on the self-stimulation behaviour both are antagonized by a newly synthesized cyclic CCK analogue.
    Heidbreder C; Roques BP; De Witte P
    Neuropeptides; 1989; 13(2):89-94. PubMed ID: 2739884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential antagonism by proglumide of various CCK-mediated effects in mice.
    Barbaz BS; Autry WL; Ambrose FG; Gerber R; Liebman JM
    Prog Clin Biol Res; 1985; 192():151-8. PubMed ID: 4080708
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antipsychotic potential of CCK-based treatments: an assessment using the prepulse inhibition model of psychosis.
    Feifel D; Reza T; Robeck S
    Neuropsychopharmacology; 1999 Feb; 20(2):141-9. PubMed ID: 9885794
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activation of CCK-A receptors induces elevation of plasma corticosterone in rats.
    Katsuura G; Ibii N; Matsushita A
    Peptides; 1992; 13(1):203-5. PubMed ID: 1620654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Passive avoidance deficit following intracerebroventricular administration of cholecystokinin tetrapeptide amide in rats.
    Katsuura G; Itoh S
    Peptides; 1986; 7(5):809-14. PubMed ID: 3797342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of ceruletide and haloperidol on the hypothalamo-pituitary beta-endorphin system and brain beta-endorphin contents in the rat: with special reference to effects of ceruletide in chronically haloperidol-treated rats.
    Hagino Y; Okuwa M; Moroji T
    Neuropeptides; 1991 Jan; 18(1):1-14. PubMed ID: 2046884
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reversed behavioral effect of cholecystokinin after frontal decortication in rats.
    Itoh S; Katsuura G; Itoh T; Morimoto T
    Life Sci; 1994; 55(11):PL213-6. PubMed ID: 8072383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of cholecystokinin on central monoaminergic pathways.
    Widerlöv E; Kalivas PW; Lewis MH; Prange AJ; Breese GR
    Regul Pept; 1983 May; 6(2):99-109. PubMed ID: 6308717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antinociceptive action of cholecystokinin octapeptide (CCK 8) and related peptides in rats and mice: effects of naloxone and peptidase inhibitors.
    Hill RG; Hughes J; Pittaway KM
    Neuropharmacology; 1987 Apr; 26(4):289-300. PubMed ID: 3295578
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Apomorphine separates the antinociceptive effects of cholecystokinin octapeptide and ceruletide from those of morphine.
    Zetler G
    Eur J Pharmacol; 1983 Aug; 92(1-2):151-4. PubMed ID: 6313385
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intracerebroventricular administration of cholecystokinin-8 elevates plasma pancreatic polypeptide levels in awake dogs.
    Lu QH; Greeley GH; Zhu XG; Thompson JC
    Endocrinology; 1984 Jun; 114(6):2415-7. PubMed ID: 6327247
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The inhibition of tail-pinch-induced food intake by cholecystokinin octapeptides and their fragments.
    Telegdy G; Kádár T; Kovács K; Penke B
    Life Sci; 1984 Jul; 35(2):163-70. PubMed ID: 6330485
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Behavioral effects of cholecystokinin and its related peptides in rats.
    Itoh S; Katsuura G
    Prog Clin Biol Res; 1985; 192():139-45. PubMed ID: 2934743
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential effects of sulfated cholecystokinin octapeptide and proglumide injected intrathecally on antinociception induced by beta-endorphin and morphine administered intracerebroventricularly in mice.
    Suh HH; Tseng LF
    Eur J Pharmacol; 1990 Apr; 179(3):329-38. PubMed ID: 2142090
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in motor activity and forebrain [propionyl-3H]propionylated-CCK-8 binding in mice after repeated administration of drugs affecting cholecystokinin receptors.
    Vasar E; Stephenson JD; Meldrum BS
    Eur J Pharmacol; 1991 Sep; 202(3):385-90. PubMed ID: 1748160
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Caerulein and its analogues: neuropharmacological properties.
    Zetler G
    Peptides; 1985; 6 Suppl 3():33-46. PubMed ID: 3913910
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ethological analysis of cholecystokinin (CCKA and CCKB) receptor ligands in the elevated plus-maze test of anxiety in mice.
    Johnson NJ; Rodgers RJ
    Psychopharmacology (Berl); 1996 Apr; 124(4):355-64. PubMed ID: 8739551
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preventive effect of cholecystokinin octapeptide on experimental amnesia in rats.
    Katsuura G; Itoh S
    Peptides; 1986; 7(1):105-10. PubMed ID: 3714527
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of leptin in the control of feeding of goldfish Carassius auratus: interactions with cholecystokinin, neuropeptide Y and orexin A, and modulation by fasting.
    Volkoff H; Eykelbosh AJ; Peter RE
    Brain Res; 2003 May; 972(1-2):90-109. PubMed ID: 12711082
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cholecystokinin octapeptide (CCK-8) injected into a cerebral ventricle induces a fever-like thermoregulatory response mediated by type B CCK-receptors in the rat.
    Szelényi Z; Barthó L; Székely M; Romanovsky AA
    Brain Res; 1994 Feb; 638(1-2):69-77. PubMed ID: 8199877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.