These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27398924)

  • 41. Thermal Transport Driven by Extraneous Nanoparticles and Phase Segregation in Nanostructured Mg2(Si,Sn) and Estimation of Optimum Thermoelectric Performance.
    Tazebay AS; Yi SI; Lee JK; Kim H; Bahk JH; Kim SL; Park SD; Lee HS; Shakouri A; Yu C
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7003-12. PubMed ID: 26915474
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Marked effects of alloying on the thermal conductivity of nanoporous materials.
    Bera C; Mingo N; Volz S
    Phys Rev Lett; 2010 Mar; 104(11):115502. PubMed ID: 20366483
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mean Free Path Suppression of Low-Frequency Phonons in SiGe Nanowires.
    Smith B; Fleming G; Parrish KD; Wen F; Fleming E; Jarvis K; Tutuc E; McGaughey AJH; Shi L
    Nano Lett; 2020 Nov; 20(11):8384-8391. PubMed ID: 33054227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phonon Transmission Across the Si-Ge Interface.
    Bi K; Lou J; Chen Y
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3187-90. PubMed ID: 26353560
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors.
    Kim W; Zide J; Gossard A; Klenov D; Stemmer S; Shakouri A; Majumdar A
    Phys Rev Lett; 2006 Feb; 96(4):045901. PubMed ID: 16486849
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unusually low thermal conductivity of atomically thin 2D tellurium.
    Gao Z; Tao F; Ren J
    Nanoscale; 2018 Jul; 10(27):12997-13003. PubMed ID: 29786732
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The best nanoparticle size distribution for minimum thermal conductivity.
    Zhang H; Minnich AJ
    Sci Rep; 2015 Mar; 5():8995. PubMed ID: 25757414
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of extended strain fields on point defect phonon scattering in thermoelectric materials.
    Ortiz BR; Peng H; Lopez A; Parilla PA; Lany S; Toberer ES
    Phys Chem Chem Phys; 2015 Jul; 17(29):19410-23. PubMed ID: 26145414
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide.
    Lv W; Henry A
    Sci Rep; 2016 Oct; 6():35720. PubMed ID: 27767082
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical and Thermal Conductivity Properties of Enhanced Phases in Mg-Zn-Zr System from First Principles.
    Wang S; Zhao Y; Guo H; Lan F; Hou H
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30336614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study.
    Liao B; Qiu B; Zhou J; Huberman S; Esfarjani K; Chen G
    Phys Rev Lett; 2015 Mar; 114(11):115901. PubMed ID: 25839292
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tuning Hydrogenated Silicon, Germanium, and SiGe Nanocluster Properties Using Theoretical Calculations and a Machine Learning Approach.
    Choi Y; Adamczyk AJ
    J Phys Chem A; 2018 Dec; 122(51):9851-9868. PubMed ID: 30484641
    [TBL] [Abstract][Full Text] [Related]  

  • 53. First-principles calculation of alloy scattering in Ge(x)Si(1-x).
    Murphy-Armando F; Fahy S
    Phys Rev Lett; 2006 Sep; 97(9):096606. PubMed ID: 17026387
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular dynamic simulation of thermal transport in monolayer C
    Yang B; Han D; Wang X; Hu S; Xin Q; Cao BY; Xin G
    Nanotechnology; 2020 May; 31(18):185404. PubMed ID: 31952060
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental Evidence of Superdiffusive Thermal Transport in Si
    Yao F; Xia S; Wei H; Zheng J; Yuan Z; Wang Y; Huang B; Li D; Lu H; Xu D
    Nano Lett; 2022 Sep; 22(17):6888-6894. PubMed ID: 36054095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. First-Principles Analysis of Vibrational Properties of Type II SiGe Alloy Clathrates.
    Xue D; Myles CW
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31083355
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations.
    Zhou F; Nielson W; Xia Y; Ozoliņš V
    Phys Rev Lett; 2014 Oct; 113(18):185501. PubMed ID: 25396378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. t-Si
    Fan Q; Niu R; Zhang W; Zhang W; Ding Y; Yun S
    Chemphyschem; 2019 Jan; 20(1):128-133. PubMed ID: 30397996
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mixed-ligand-functionalized silicon-germanium alloy nanocrystals with improved carrier mobilities.
    Wei L; Zhang H; Shi L; Yang Z
    Nanoscale; 2024 Mar; 16(13):6516-6521. PubMed ID: 38469900
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A model for predicting the thermal conductivity of SiO2-Ge nanoparticle composites.
    Kuryliuk V; Nadtochiy A; Korotchenkov O; Wang CC; Li PW
    Phys Chem Chem Phys; 2015 May; 17(20):13429-41. PubMed ID: 25927545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.