These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 27399057)

  • 1. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.
    Regmi R; Berthelot J; Winkler PM; Mivelle M; Proust J; Bedu F; Ozerov I; Begou T; Lumeau J; Rigneault H; García-Parajó MF; Bidault S; Wenger J; Bonod N
    Nano Lett; 2016 Aug; 16(8):5143-51. PubMed ID: 27399057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Dielectric Nanopillar Antenna-Resonators for Efficient Collected Photon Rate from Silicon Carbide Color Centers.
    Inam FA; Castelletto S
    Nanomaterials (Basel); 2023 Jan; 13(1):. PubMed ID: 36616105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence.
    Roy P; Zhu S; Claude JB; Liu J; Wenger J
    ACS Nano; 2023 Nov; 17(22):22418-22429. PubMed ID: 37931219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unidirectional Enhanced Dipolar Emission with an Individual Dielectric Nanoantenna.
    Zhang T; Xu J; Deng ZL; Hu D; Qin F; Li X
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31003409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bridging the Gap between Dielectric Nanophotonics and the Visible Regime with Effectively Lossless Gallium Phosphide Antennas.
    Cambiasso J; Grinblat G; Li Y; Rakovich A; Cortés E; Maier SA
    Nano Lett; 2017 Feb; 17(2):1219-1225. PubMed ID: 28094990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles.
    Makarov SV; Petrov MI; Zywietz U; Milichko V; Zuev D; Lopanitsyna N; Kuksin A; Mukhin I; Zograf G; Ubyivovk E; Smirnova DA; Starikov S; Chichkov BN; Kivshar YS
    Nano Lett; 2017 May; 17(5):3047-3053. PubMed ID: 28409641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion.
    Caldarola M; Albella P; Cortés E; Rahmani M; Roschuk T; Grinblat G; Oulton RF; Bragas AV; Maier SA
    Nat Commun; 2015 Aug; 6():7915. PubMed ID: 26238815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode.
    Gili VF; Ghirardini L; Rocco D; Marino G; Favero I; Roland I; Pellegrini G; Duò L; Finazzi M; Carletti L; Locatelli A; Lemaître A; Neshev D; De Angelis C; Leo G; Celebrano M
    Beilstein J Nanotechnol; 2018; 9():2306-2314. PubMed ID: 30202699
    [No Abstract]   [Full Text] [Related]  

  • 9. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.
    Chen X; Lindquist NC; Klemme DJ; Nagpal P; Norris DJ; Oh SH
    Nano Lett; 2016 Dec; 16(12):7849-7856. PubMed ID: 27960527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric optical nanoantennas.
    Hasan MR; Hellesø OG
    Nanotechnology; 2021 May; 32(20):202001. PubMed ID: 33461187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-Dielectric Antenna Wavelength Router with Bidirectional Scattering of Visible Light.
    Li J; Verellen N; Vercruysse D; Bearda T; Lagae L; Van Dorpe P
    Nano Lett; 2016 Jul; 16(7):4396-403. PubMed ID: 27244478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition.
    Lee EK; Song JH; Jeong KY; Kang JH; Park HG; Seo MK
    Sci Rep; 2015 May; 5():10400. PubMed ID: 25988729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of Nanoscale Light Confinement in Plasmonic Nanoantennas by Brownian Optical Microscopy.
    Lee YU; Wisna GBM; Hsu SW; Zhao J; Lei M; Li S; Tao AR; Liu Z
    ACS Nano; 2020 Jun; 14(6):7666-7672. PubMed ID: 32438800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence Enhancement in Topologically Optimized Gallium Phosphide All-Dielectric Nanoantennas.
    Vidal C; Tilmann B; Tiwari S; Raziman TV; Maier SA; Wenger J; Sapienza R
    Nano Lett; 2024 Feb; 24(8):2437-2443. PubMed ID: 38354357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimode hybrid gold-silicon nanoantennas for tailored nanoscale optical confinement.
    McPolin CPT; Vila YN; Krasavin AV; Llorca J; Zayats AV
    Nanophotonics; 2023 Jul; 12(14):2997-3005. PubMed ID: 37457505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epitaxial Nanoflag Photonics: Semiconductor Nanoemitters Grown with Their Nanoantennas.
    Sorias O; Kelrich A; Gladstone R; Ritter D; Orenstein M
    Nano Lett; 2017 Oct; 17(10):6011-6017. PubMed ID: 28858507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target-Triggered Assembly of Nanogap Antennas to Enhance the Fluorescence of Single Molecules and Their Application in MicroRNA Detection.
    Peng M; Sun F; Na N; Ouyang J
    Small; 2020 May; 16(19):e2000460. PubMed ID: 32309897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subwavelength dielectric resonators for nonlinear nanophotonics.
    Koshelev K; Kruk S; Melik-Gaykazyan E; Choi JH; Bogdanov A; Park HG; Kivshar Y
    Science; 2020 Jan; 367(6475):288-292. PubMed ID: 31949078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced single-molecule spectroscopy in highly confined optical fields: from λ/2-Fabry-Pérot resonators to plasmonic nano-antennas.
    Kern AM; Zhang D; Brecht M; Chizhik AI; Failla AV; Wackenhut F; Meixner AJ
    Chem Soc Rev; 2014 Feb; 43(4):1263-86. PubMed ID: 24365864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-Field Mapping of Optical Fabry-Perot Modes in All-Dielectric Nanoantennas.
    Frolov AY; Verellen N; Li J; Zheng X; Paddubrouskaya H; Denkova D; Shcherbakov MR; Vandenbosch GAE; Panov VI; Van Dorpe P; Fedyanin AA; Moshchalkov VV
    Nano Lett; 2017 Dec; 17(12):7629-7637. PubMed ID: 29083191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.