These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27399153)

  • 1. Rapid and Label-Free Strategy to Isolate Aptamers for Metal Ions.
    Qu H; Csordas AT; Wang J; Oh SS; Eisenstein MS; Soh HT
    ACS Nano; 2016 Aug; 10(8):7558-65. PubMed ID: 27399153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed Evolution of Aptamer Discovery Technologies.
    Wu D; Gordon CKL; Shin JH; Eisenstein M; Soh HT
    Acc Chem Res; 2022 Mar; 55(5):685-695. PubMed ID: 35130439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancements in Aptamer Discovery Technologies.
    Gotrik MR; Feagin TA; Csordas AT; Nakamoto MA; Soh HT
    Acc Chem Res; 2016 Sep; 49(9):1903-10. PubMed ID: 27526193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle display: a quantitative screening method for generating high-affinity aptamers.
    Wang J; Gong Q; Maheshwari N; Eisenstein M; Arcila ML; Kosik KS; Soh HT
    Angew Chem Int Ed Engl; 2014 May; 53(19):4796-801. PubMed ID: 24644057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speeding up in Vitro Discovery of Structure-Switching Aptamers via Magnetic Cross-Linking Precipitation.
    Qiao N; Li J; Wu X; Diao D; Zhao J; Li J; Ren X; Ding X; Shangguan D; Lou X
    Anal Chem; 2019 Nov; 91(21):13383-13389. PubMed ID: 31580650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Efficient screening for 8-oxoguanine DNA glycosylase binding aptamers via capillary electrophoresis].
    Han S; Zhao L; Yang G; Qu F
    Se Pu; 2021 Jul; 39(7):721-729. PubMed ID: 34227370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Click-Particle Display for Base-Modified Aptamer Discovery.
    Gordon CKL; Wu D; Pusuluri A; Feagin TA; Csordas AT; Eisenstein MS; Hawker CJ; Niu J; Soh HT
    ACS Chem Biol; 2019 Dec; 14(12):2652-2662. PubMed ID: 31532184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of a High-Affinity DNA Aptamer for the Recognition of Cadmium Ions.
    Yang G; Liu Y; Deng Y; Chen Z; Chen H; Li S; He N
    J Biomed Nanotechnol; 2021 Nov; 17(11):2240-2246. PubMed ID: 34906284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid screening of aptamers for fluorescent targets by integrated digital PCR and flow cytometry.
    Fang X; Li W; Gao T; Ain Zahra QU; Luo Z; Pei R
    Talanta; 2022 May; 242():123302. PubMed ID: 35180537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an efficient targeted cell-SELEX procedure for DNA aptamer reagents.
    Meyer S; Maufort JP; Nie J; Stewart R; McIntosh BE; Conti LR; Ahmad KM; Soh HT; Thomson JA
    PLoS One; 2013; 8(8):e71798. PubMed ID: 23967247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells.
    Hamula CL; Peng H; Wang Z; Newbigging AM; Tyrrell GJ; Li XF; Le XC
    J Mol Evol; 2015 Dec; 81(5-6):194-209. PubMed ID: 26538121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Selection Strategy for Isolating Aptamers with pH-Sensitive Binding Activity.
    Gordon CKL; Eisenstein M; Soh HT
    ACS Sens; 2018 Dec; 3(12):2574-2580. PubMed ID: 30520292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Selection of Fluorescence-Enhancing RNA Aptamers.
    Gotrik M; Sekhon G; Saurabh S; Nakamoto M; Eisenstein M; Soh HT
    J Am Chem Soc; 2018 Mar; 140(10):3583-3591. PubMed ID: 29505267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Exonucleases for Aptamer Characterization, Engineering, and Sensing.
    Alkhamis O; Canoura J; Ly PT; Xiao Y
    Acc Chem Res; 2023 Jul; 56(13):1731-1743. PubMed ID: 37314701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of Intracellularly Functional RNA Mimics of Green Fluorescent Protein Using Fluorescence-Activated Cell Sorting.
    Zou J; Huang X; Wu L; Chen G; Dong J; Cui X; Tang Z
    J Mol Evol; 2015 Dec; 81(5-6):172-8. PubMed ID: 26573804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of aptamers against Lactoferrin based on silver enhanced and fluorescence-activated cell sorting.
    Yu F; Li H; Sun W; Zhao Y; Xu D; He F
    Talanta; 2019 Feb; 193():110-117. PubMed ID: 30368278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of immobilized metal affinity chromatography (IMAC) resins on DNA aptamer selection.
    Kowalska E; Bartnicki F; Pels K; Strzalka W
    Anal Bioanal Chem; 2014 Sep; 406(22):5495-9. PubMed ID: 24924211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Overview of Aptamer: The Prominent Applications and Different Computational Tools for its Design.
    Ameri M; Eskandari S; Nezafat N
    Curr Pharm Biotechnol; 2021; 22(10):1273-1286. PubMed ID: 33208068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiparameter Particle Display (MPPD): A Quantitative Screening Method for the Discovery of Highly Specific Aptamers.
    Wang J; Yu J; Yang Q; McDermott J; Scott A; Vukovich M; Lagrois R; Gong Q; Greenleaf W; Eisenstein M; Ferguson BS; Soh HT
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):744-747. PubMed ID: 27933702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.