These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 27399642)

  • 1. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model.
    Debiec KT; Cerutti DS; Baker LR; Gronenborn AM; Case DA; Chong LT
    J Chem Theory Comput; 2016 Aug; 12(8):3926-47. PubMed ID: 27399642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A twist in the road less traveled: The AMBER ff15ipq-m force field for protein mimetics.
    Bogetti AT; Piston HE; Leung JMG; Cabalteja CC; Yang DT; DeGrave AJ; Debiec KT; Cerutti DS; Case DA; Horne WS; Chong LT
    J Chem Phys; 2020 Aug; 153(6):064101. PubMed ID: 35287464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of Fluorinated, Aromatic Amino Acid Parameters for Use with the AMBER ff15ipq Protein Force Field.
    Yang DT; Gronenborn AM; Chong LT
    J Phys Chem A; 2022 Apr; 126(14):2286-2297. PubMed ID: 35352936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Links between the charge model and bonded parameter force constants in biomolecular force fields.
    Cerutti DS; Debiec KT; Case DA; Chong LT
    J Chem Phys; 2017 Oct; 147(16):161730. PubMed ID: 29096508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins.
    Cerutti DS; Swope WC; Rice JE; Case DA
    J Chem Theory Comput; 2014 Oct; 10(10):4515-4534. PubMed ID: 25328495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating amber force fields using computed NMR chemical shifts.
    Koes DR; Vries JK
    Proteins; 2017 Oct; 85(10):1944-1956. PubMed ID: 28688107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos.
    Yuwen T; Xue Y; Skrynnikov NR
    Biochemistry; 2016 Mar; 55(12):1784-800. PubMed ID: 26910732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New-generation amber united-atom force field.
    Yang L; Tan CH; Hsieh MJ; Wang J; Duan Y; Cieplak P; Caldwell J; Kollman PA; Luo R
    J Phys Chem B; 2006 Jul; 110(26):13166-76. PubMed ID: 16805629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How well do force fields capture the strength of salt bridges in proteins?
    Ahmed MC; Papaleo E; Lindorff-Larsen K
    PeerJ; 2018; 6():e4967. PubMed ID: 29910983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GAFF/IPolQ-Mod+LJ-Fit: Optimized force field parameters for solvation free energy predictions.
    Mecklenfeld A; Raabe G
    ADMET DMPK; 2020; 8(3):274-296. PubMed ID: 35300308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled two-dimensional main-chain torsional potential for protein dynamics II: performance and validation.
    Gao Y; Li Y; Mou L; Hu W; Zheng J; Zhang JZ; Mei Y
    J Phys Chem B; 2015 Mar; 119(11):4188-93. PubMed ID: 25719206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of RESP and IPolQ-Mod Partial Charges for Solvation Free Energy Calculations of Various Solute/Solvent Pairs.
    Mecklenfeld A; Raabe G
    J Chem Theory Comput; 2017 Dec; 13(12):6266-6274. PubMed ID: 29125770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers.
    Hoffmann F; Mulder FAA; Schäfer LV
    J Chem Phys; 2020 Feb; 152(8):084102. PubMed ID: 32113361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derivation of fixed partial charges for amino acids accommodating a specific water model and implicit polarization.
    Cerutti DS; Rice JE; Swope WC; Case DA
    J Phys Chem B; 2013 Feb; 117(8):2328-38. PubMed ID: 23379664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations.
    Graen T; Hoefling M; Grubmüller H
    J Chem Theory Comput; 2014 Dec; 10(12):5505-12. PubMed ID: 26583233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized Radii for Poisson-Boltzmann Calculations with the AMBER Force Field.
    Swanson JM; Adcock SA; McCammon JA
    J Chem Theory Comput; 2005 May; 1(3):484-93. PubMed ID: 26641515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further efforts toward a molecular dynamics force field for simulations of peptides in 40% trifluoroethanol-water.
    Gerig JT
    J Phys Chem B; 2015 Apr; 119(16):5163-75. PubMed ID: 25806670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields.
    Chen W; Shi C; MacKerell AD; Shen J
    J Phys Chem B; 2015 Jun; 119(25):7902-10. PubMed ID: 26020564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.