These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 27399696)
1. A Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks. Ponce H; Martínez-Villaseñor Mde L; Miralles-Pechuán L Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399696 [TBL] [Abstract][Full Text] [Related]
2. A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks. Ponce H; Miralles-Pechuán L; Martínez-Villaseñor ML Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27792136 [TBL] [Abstract][Full Text] [Related]
3. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors. Yurtman A; Barshan B Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28792481 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments. Baldominos A; Saez Y; Isasi P Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690587 [TBL] [Abstract][Full Text] [Related]
5. Human Activity Recognition from Body Sensor Data using Deep Learning. Hassan MM; Huda S; Uddin MZ; Almogren A; Alrubaian M J Med Syst; 2018 Apr; 42(6):99. PubMed ID: 29663090 [TBL] [Abstract][Full Text] [Related]
6. Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk. Kańtoch E Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249987 [TBL] [Abstract][Full Text] [Related]
7. An Intelligent Failure Detection on a Wireless Sensor Network for Indoor Climate Conditions. Gutiérrez S; Ponce H Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791387 [TBL] [Abstract][Full Text] [Related]
8. Physical Human Activity Recognition Using Wearable Sensors. Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450 [TBL] [Abstract][Full Text] [Related]
9. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition. Janidarmian M; Roshan Fekr A; Radecka K; Zilic Z Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28272362 [TBL] [Abstract][Full Text] [Related]
10. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors. Wang Z; Jiang M; Hu Y; Li H IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):691-9. PubMed ID: 22614724 [TBL] [Abstract][Full Text] [Related]
11. A Multi-Label Based Physical Activity Recognition via Cascade Classifier. Mo L; Zhu Y; Zeng L Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904797 [TBL] [Abstract][Full Text] [Related]
12. Wearable Sensor Data Classification for Human Activity Recognition Based on an Iterative Learning Framework. Davila JC; Cretu AM; Zaremba M Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590422 [TBL] [Abstract][Full Text] [Related]
13. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. Ermes M; Pärkka J; Mantyjarvi J; Korhonen I IEEE Trans Inf Technol Biomed; 2008 Jan; 12(1):20-6. PubMed ID: 18270033 [TBL] [Abstract][Full Text] [Related]
14. A Framework for Maternal Physical Activities and Health Monitoring Using Wearable Sensors. Ullah F; Iqbal A; Iqbal S; Kwak D; Anwar H; Khan A; Ullah R; Siddique H; Kwak KS Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372186 [TBL] [Abstract][Full Text] [Related]
15. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. Ordóñez FJ; Roggen D Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797612 [TBL] [Abstract][Full Text] [Related]
16. Automatic Annotation for Human Activity Recognition in Free Living Using a Smartphone. Cruciani F; Cleland I; Nugent C; McCullagh P; Synnes K; Hallberg J Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29987218 [TBL] [Abstract][Full Text] [Related]
17. A Machine Learning Approach for Human Activity Recognition. Papoutsis A; Botilias G; Karvelis P; Stylios C Stud Health Technol Inform; 2020 Sep; 273():155-160. PubMed ID: 33087606 [TBL] [Abstract][Full Text] [Related]
18. Human Movement Recognition Based on the Stochastic Characterisation of Acceleration Data. Munoz-Organero M; Lotfi A Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27618063 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data. Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727 [TBL] [Abstract][Full Text] [Related]