BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27399976)

  • 1. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors.
    Blaine Marchant D; Soltis DE; Soltis PS
    New Phytol; 2016 Nov; 212(3):708-718. PubMed ID: 27399976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate niche modeling in the perennial Glycine (Leguminosae) allopolyploid complex.
    Harbert RS; Brown AH; Doyle JJ
    Am J Bot; 2014 Apr; 101(4):710-21. PubMed ID: 24699543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abiotic Niche Divergence of Hybrid Species from Their Progenitors.
    Wang D; Xu X; Zhang H; Xi Z; Abbott RJ; Fu J; Liu J
    Am Nat; 2022 Nov; 200(5):634-645. PubMed ID: 36260852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid allopolyploid radiation of moonwort ferns (Botrychium; Ophioglossaceae) revealed by PacBio sequencing of homologous and homeologous nuclear regions.
    Dauphin B; Grant JR; Farrar DR; Rothfels CJ
    Mol Phylogenet Evol; 2018 Mar; 120():342-353. PubMed ID: 29242164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The speciation and adaptation of the polyploids: a case study of the Chinese Isoetes L. diploid-polyploid complex.
    Dai X; Li X; Huang Y; Liu X
    BMC Evol Biol; 2020 Sep; 20(1):118. PubMed ID: 32928096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyploidy associated with altered and broader ecological niches in the Claytonia perfoliata (Portulacaceae) species complex.
    McIntyre PJ
    Am J Bot; 2012 Apr; 99(4):655-62. PubMed ID: 22434773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for shared broad-scale climatic niches of diploid and polyploid plants.
    Glennon KL; Ritchie ME; Segraves KA
    Ecol Lett; 2014 May; 17(5):574-82. PubMed ID: 24818236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Widespread generalist clones are associated with range and niche expansion in allopolyploids of Pacific Northwest Hawthorns (Crataegus L.).
    Coughlan JM; Han S; Stefanović S; Dickinson TA
    Mol Ecol; 2017 Oct; 26(20):5484-5499. PubMed ID: 28833842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-scale empirical data on niche divergence and homeolog expression patterns in an allopolyploid and its diploid progenitor species.
    Akiyama R; Sun J; Hatakeyama M; Lischer HEL; Briskine RV; Hay A; Gan X; Tsiantis M; Kudoh H; Kanaoka MM; Sese J; Shimizu KK; Shimizu-Inatsugi R
    New Phytol; 2021 Mar; 229(6):3587-3601. PubMed ID: 33222195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eco-genetic additivity of diploids in allopolyploid wild wheats.
    Huynh S; Broennimann O; Guisan A; Felber F; Parisod C
    Ecol Lett; 2020 Apr; 23(4):663-673. PubMed ID: 32012420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids.
    Karunarathne P; Schedler M; Martínez EJ; Honfi AI; Novichkova A; Hojsgaard D
    Ann Bot; 2018 May; 121(6):1183-1196. PubMed ID: 29415153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa.
    Molina-Henao YF; Hopkins R
    Am J Bot; 2019 Jan; 106(1):61-70. PubMed ID: 30609009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyploid goldback and silverback ferns (Pentagramma) occupy a wider, colder, and wetter bioclimatic niche than diploid counterparts.
    Wefferling KM; Castro M; Castro S; Holmlund H; Loureiro J; Rothfels CJ; Schuettpelz E
    Am J Bot; 2024 Mar; 111(3):e16305. PubMed ID: 38517199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of an allotetraploid fern species, Lepisorus yamaokae Seriz., between two highly niche-differentiated parental species.
    Fujiwara T; Egashira T; Gutiérrez-Ortega JS; Hori K; Ebihara A; Watano Y
    Am J Bot; 2022 Sep; 109(9):1456-1471. PubMed ID: 35938973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Niche divergence and limits to expansion in the high polyploid Dianthus broteri complex.
    López-Jurado J; Mateos-Naranjo E; Balao F
    New Phytol; 2019 Apr; 222(2):1076-1087. PubMed ID: 30585629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic clues to the evolutionary success of polyploid plants.
    Hegarty MJ; Hiscock SJ
    Curr Biol; 2008 May; 18(10):R435-R444. PubMed ID: 18492478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climatic niche comparison among ploidal levels in the classic autopolyploid system, Galax urceolata.
    Gaynor ML; Marchant DB; Soltis DE; Soltis PS
    Am J Bot; 2018 Oct; 105(10):1631-1642. PubMed ID: 30239980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives.
    Baniaga AE; Marx HE; Arrigo N; Barker MS
    Ecol Lett; 2020 Jan; 23(1):68-78. PubMed ID: 31637845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high frequency of allopolyploid speciation in the gymnospermous genus Ephedra and its possible association with some biological and ecological features.
    Wu H; Ma Z; Wang MM; Qin AL; Ran JH; Wang XQ
    Mol Ecol; 2016 Mar; 25(5):1192-210. PubMed ID: 26800145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel polyploid speciation: distinct sympatric gene-pools of recurrently derived allo-octoploid Asplenium ferns.
    Perrie LR; Shepherd LD; De Lange PJ; Brownsey PJ
    Mol Ecol; 2010 Jul; 19(14):2916-32. PubMed ID: 20579287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.