These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 27400030)

  • 1. Particle Deposition onto People in a Transit Venue.
    Liljegren JC; Brown DF; Lunden MM; Silcott D
    Health Secur; 2016; 14(4):237-49. PubMed ID: 27400030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations.
    Kim KY; Kim YS; Roh YM; Lee CM; Kim CN
    J Hazard Mater; 2008 Jun; 154(1-3):440-3. PubMed ID: 18036738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle deposition in indoor environments: analysis of influencing factors.
    Zhao B; Wu J
    J Hazard Mater; 2007 Aug; 147(1-2):439-48. PubMed ID: 17280778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new look at inhalable metalliferous airborne particles on rail subway platforms.
    Moreno T; Martins V; Querol X; Jones T; BéruBé K; Minguillón MC; Amato F; Capdevila M; de Miguel E; Centelles S; Gibbons W
    Sci Total Environ; 2015 Feb; 505():367-75. PubMed ID: 25461038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure to airborne particulate matter in the subway system.
    Martins V; Moreno T; Minguillón MC; Amato F; de Miguel E; Capdevila M; Querol X
    Sci Total Environ; 2015 Apr; 511():711-22. PubMed ID: 25616190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Distribution of airborne fungi, particulate matter and carbon dioxide in Seoul metropolitan subway stations].
    Kim KY; Park JB; Kim CN; Lee KJ
    J Prev Med Public Health; 2006 Jul; 39(4):325-30. PubMed ID: 16910306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contamination and release of nanomaterials associated with the use of personal protective clothing.
    Tsai CS
    Ann Occup Hyg; 2015 May; 59(4):491-503. PubMed ID: 25582117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stratum Ventilation: Enabling Simultaneous Energy Conservation and Air Purification in Subway Cars.
    Mao Y; Wang S; Liang J; Mao S; Han Y; Zhang S
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of particle deposition to and removal from clothing, skin, and hair after a radioactive airborne dispersal event.
    Brambilla S; Nelson MA; Brown MJ
    J Environ Radioact; 2023 Dec; 270():107296. PubMed ID: 37734236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors controlling air quality in different European subway systems.
    Martins V; Moreno T; Mendes L; Eleftheriadis K; Diapouli E; Alves CA; Duarte M; de Miguel E; Capdevila M; Querol X; Minguillón MC
    Environ Res; 2016 Apr; 146():35-46. PubMed ID: 26717078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multivariate study for characterizing particulate matter (PM(10), PM(2.5), and PM(1)) in Seoul metropolitan subway stations, Korea.
    Kwon SB; Jeong W; Park D; Kim KT; Cho KH
    J Hazard Mater; 2015 Oct; 297():295-303. PubMed ID: 26010475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle loading rates for HVAC filters, heat exchangers, and ducts.
    Waring MS; Siegel JA
    Indoor Air; 2008 Jun; 18(3):209-24. PubMed ID: 18336534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An exemple of particle concentration reduction in Parisian subway stations by electrostatic precipitation.
    Tokarek S; Bernis A
    Environ Technol; 2006 Nov; 27(11):1279-87. PubMed ID: 17203611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study to quantify airborne particle deposition onto and resuspension from clothing using a fluorescent-tracking method.
    Ren J; Tang M; Novoselac A
    Build Environ; 2022 Feb; 209():108580. PubMed ID: 34848915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indoor particle dynamics.
    Nazaroff WW
    Indoor Air; 2004; 14 Suppl 7():175-83. PubMed ID: 15330785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airborne particle deposition onto the ocular surface.
    Schneider T; Bohgard M
    Indoor Air; 2005 Jun; 15(3):215-9. PubMed ID: 15865621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach.
    Midander K; Elihn K; Wallén A; Belova L; Karlsson AK; Wallinder IO
    Sci Total Environ; 2012 Jun; 427-428():390-400. PubMed ID: 22551935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approach to assess the Particulate Matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract.
    Sánchez-Soberón F; Mari M; Kumar V; Rovira J; Nadal M; Schuhmacher M
    Environ Res; 2015 Nov; 143(Pt A):10-8. PubMed ID: 26408807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells.
    Karlsson HL; Nilsson L; Möller L
    Chem Res Toxicol; 2005 Jan; 18(1):19-23. PubMed ID: 15651844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.