These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 27400062)
1. How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis aeruginosa exposed to nickel stress. Martínez-Ruiz EB; Martínez-Jerónimo F Ecotoxicol Environ Saf; 2016 Nov; 133():36-46. PubMed ID: 27400062 [TBL] [Abstract][Full Text] [Related]
2. Nickel has biochemical, physiological, and structural effects on the green microalga Ankistrodesmus falcatus: An integrative study. Martínez-Ruiz EB; Martínez-Jerónimo F Aquat Toxicol; 2015 Dec; 169():27-36. PubMed ID: 26513220 [TBL] [Abstract][Full Text] [Related]
3. Exposure to the herbicide 2,4-D produces different toxic effects in two different phytoplankters: A green microalga (Ankistrodesmus falcatus) and a toxigenic cyanobacterium (Microcystis aeruginosa). Martínez-Ruiz EB; Martínez-Jerónimo F Sci Total Environ; 2018 Apr; 619-620():1566-1578. PubMed ID: 29070448 [TBL] [Abstract][Full Text] [Related]
4. Multistressor negative effects on an experimental phytoplankton community. The case of glyphosate and one toxigenic cyanobacterium on Chlorophycean microalgae. Hernández-García CI; Martínez-Jerónimo F Sci Total Environ; 2020 May; 717():137186. PubMed ID: 32084686 [TBL] [Abstract][Full Text] [Related]
5. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to toxic Microcystis aeruginosa and thermal stress. Liu Y; Yang M; Zheng L; Nguyen H; Ni L; Song S; Sui Y Sci Total Environ; 2020 Nov; 743():140754. PubMed ID: 32758840 [TBL] [Abstract][Full Text] [Related]
6. Biometric and physiological responses of Egeria densa Planch. cultivated with toxic and non-toxic strains of Microcystis. Amorim CA; Ulisses C; Moura AN Aquat Toxicol; 2017 Oct; 191():201-208. PubMed ID: 28846860 [TBL] [Abstract][Full Text] [Related]
7. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and hypoxia. Hu M; Wu F; Yuan M; Li Q; Gu Y; Wang Y; Liu Q Chemosphere; 2015 Nov; 139():541-9. PubMed ID: 26318116 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and high pH. Liu Y; Li L; Zheng L; Fu P; Wang Y; Nguyen H; Shen X; Sui Y Chemosphere; 2020 Mar; 243():125241. PubMed ID: 31995860 [TBL] [Abstract][Full Text] [Related]
9. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress. Chen L; Mao F; Kirumba GC; Jiang C; Manefield M; He Y Ecotoxicol Environ Saf; 2015 Dec; 122():126-35. PubMed ID: 26232039 [TBL] [Abstract][Full Text] [Related]
10. Interactions between the antimicrobial agent triclosan and the bloom-forming cyanobacteria Microcystis aeruginosa. Huang X; Tu Y; Song C; Li T; Lin J; Wu Y; Liu J; Wu C Aquat Toxicol; 2016 Mar; 172():103-10. PubMed ID: 26800489 [TBL] [Abstract][Full Text] [Related]
11. Physiological effects and toxin release in Microcystis aeruginosa and Microcystis viridis exposed to herbicide fenoxaprop-p-ethyl. Du Y; Ye J; Wu L; Yang C; Wang L; Hu X Environ Sci Pollut Res Int; 2017 Mar; 24(8):7752-7763. PubMed ID: 28127689 [TBL] [Abstract][Full Text] [Related]
12. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa. Chen L; Gin KY; He Y Environ Sci Pollut Res Int; 2016 Feb; 23(4):3586-95. PubMed ID: 26490939 [TBL] [Abstract][Full Text] [Related]
13. Effects of nonylphenol on the growth and microcystin production of Microcystis strains. Wang J; Xie P; Guo N Environ Res; 2007 Jan; 103(1):70-8. PubMed ID: 16831412 [TBL] [Abstract][Full Text] [Related]
14. Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions. Chia MA; Cordeiro-Araújo MK; Lorenzi AS; Bittencourt-Oliveira MDC Ecotoxicol Environ Saf; 2017 Aug; 142():189-199. PubMed ID: 28411514 [TBL] [Abstract][Full Text] [Related]
15. Physiological effects of tetracycline antibiotic pollutants on non-target aquatic Microcystis aeruginosa. Shang AH; Ye J; Chen DH; Lu XX; Lu HD; Liu CN; Wang LM J Environ Sci Health B; 2015; 50(11):809-18. PubMed ID: 26357891 [TBL] [Abstract][Full Text] [Related]
16. Interactions between Microcystis aeruginosa and coexisting bisphenol A at different phosphorus levels. Yang M; Wang X Sci Total Environ; 2019 Mar; 658():439-448. PubMed ID: 30579201 [TBL] [Abstract][Full Text] [Related]
17. Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa. Wu L; Qiu Z; Zhou Y; Du Y; Liu C; Ye J; Hu X Aquat Toxicol; 2016 Sep; 178():72-9. PubMed ID: 27472782 [TBL] [Abstract][Full Text] [Related]
18. Response of Daphnia's antioxidant system to spatial heterogeneity in Cyanobacteria concentrations in a lowland reservoir. Wojtal-Frankiewicz A; Bernasińska J; Frankiewicz P; Gwoździński K; Jurczak T PLoS One; 2014; 9(11):e112597. PubMed ID: 25380273 [TBL] [Abstract][Full Text] [Related]
19. Biomarkers involved in energy metabolism and oxidative stress response in the liver of Goodea gracilis Hubbs and Turner, 1939 exposed to the microcystin-producing Microcystis aeruginosa LB85 strain. Olivares Rubio HF; Martínez-Torres ML; Nájera-Martínez M; Dzul-Caamal R; Domínguez-López ML; García-Latorre E; Vega-López A Environ Toxicol; 2015 Sep; 30(10):1113-24. PubMed ID: 24639371 [TBL] [Abstract][Full Text] [Related]
20. Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins. Shen F; Wang L; Zhou Q; Huang X Aquat Toxicol; 2018 Mar; 196():9-16. PubMed ID: 29324395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]