BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 27400277)

  • 1. Performance evaluation of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa and its effect on marine oil-spill remediation.
    Zhu M; Zhang H; Cui W; Su Y; Sun S; Zhao C; Liu Q
    Arch Microbiol; 2024 Mar; 206(4):183. PubMed ID: 38502272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Biosurfactant Production by
    Ekprasert J; Kanakai S; Yosprasong S
    Pol J Microbiol; 2020 Sep; 69(3):273-282. PubMed ID: 33574856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhamnolipids as Effective Green Agents in the Destabilisation of Dolomite Suspension.
    Legawiec KJ; Kruszelnicki M; Bastrzyk A; Polowczyk I
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and characterization of rhamnolipids by Pseudomonas aeruginosa isolated in the Amazon region, and potential antiviral, antitumor, and antimicrobial activity.
    Cerqueira Dos Santos S; Araújo Torquato C; de Alexandria Santos D; Orsato A; Leite K; Serpeloni JM; Losi-Guembarovski R; Romão Pereira E; Dyna AL; Lopes Barboza MG; Fernandes Arakawa MH; Pires Bitencourt JA; da Cruz Silva S; da Silva Sá GC; Dias Rodrigues P; Quintella CM; Faccin-Galhardi LC
    Sci Rep; 2024 Mar; 14(1):4629. PubMed ID: 38472312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium.
    Sharma D; Saharan BS; Chauhan N; Procha S; Lal S
    Springerplus; 2015; 4(1):4. PubMed ID: 25674491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity.
    Das P; Yang XP; Ma LZ
    Front Microbiol; 2014; 5():696. PubMed ID: 25566212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquatic model for engine oil degradation by rhamnolipid producing Nocardiopsis VITSISB.
    Roy S; Chandni S; Das I; Karthik L; Kumar G; Bhaskara Rao KV
    3 Biotech; 2015 Apr; 5(2):153-164. PubMed ID: 28324576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorization of waste engine oil to mono- and di-rhamnolipid in a sustainable approach to circular bioeconomy.
    Gaur S; Jujaru M; Vennu R; Gupta S; Jain A
    Biodegradation; 2024 Apr; ():. PubMed ID: 38662141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosurfactant Production by Pseudomonas aeruginosa from Renewable Resources.
    Thavasi R; Subramanyam Nambaru VR; Jayalakshmi S; Balasubramanian T; Banat IM
    Indian J Microbiol; 2011 Jan; 51(1):30-6. PubMed ID: 22282625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of biomedical potential of biosurfactant produced by
    Sharma D; Saharan BS
    Biotechnol Rep (Amst); 2016 Sep; 11():27-35. PubMed ID: 28352537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and Characterization of Ruminal Yeast Strain with Probiotic Potential and Its Effects on Growth Performance, Nutrients Digestibility, Rumen Fermentation and Microbiota of Hu Sheep.
    Wang Y; Li Z; Jin W; Mao S
    J Fungi (Basel); 2022 Nov; 8(12):. PubMed ID: 36547593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DHA content in milk and biohydrogenation pathway in rumen: a review.
    Huang G; Zhang Y; Xu Q; Zheng N; Zhao S; Liu K; Qu X; Yu J; Wang J
    PeerJ; 2020; 8():e10230. PubMed ID: 33391862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development.
    Twigg MS; Baccile N; Banat IM; Déziel E; Marchant R; Roelants S; Van Bogaert INA
    Microb Biotechnol; 2021 Jan; 14(1):147-170. PubMed ID: 33249753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double bond localization in unsaturated rhamnolipid precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids by liquid chromatography-mass spectrometry applying online Paternò-Büchi reaction.
    Jeck V; Froning M; Tiso T; Blank LM; Hayen H
    Anal Bioanal Chem; 2020 Sep; 412(23):5601-5613. PubMed ID: 32627084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of
    Haloi S; Sarmah S; Gogoi SB; Medhi T
    3 Biotech; 2020 Mar; 10(3):120. PubMed ID: 32117681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial rhamnolipid production: a critical re-evaluation of published data and suggested future publication criteria.
    Irorere VU; Tripathi L; Marchant R; McClean S; Banat IM
    Appl Microbiol Biotechnol; 2017 May; 101(10):3941-3951. PubMed ID: 28386631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.
    Priji P; Sajith S; Unni KN; Anderson RC; Benjamin S
    J Basic Microbiol; 2017 Jan; 57(1):21-33. PubMed ID: 27400277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production, optimization, and partial purification of lipase from Pseudomonas sp. strain BUP6, a novel rumen bacterium characterized from Malabari goat.
    Priji P; Unni KN; Sajith S; Binod P; Benjamin S
    Biotechnol Appl Biochem; 2015; 62(1):71-8. PubMed ID: 24773509
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.