These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27400727)

  • 1. Validity criteria for Fermi's golden rule scattering rates applied to metallic nanowires.
    Moors K; Sorée B; Magnus W
    J Phys Condens Matter; 2016 Sep; 28(36):365302. PubMed ID: 27400727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-step model for ultrafast interfacial electron transfer: limitations of Fermi's golden rule revealed by quantum dynamics simulations.
    Liu C; Jakubikova E
    Chem Sci; 2017 Sep; 8(9):5979-5991. PubMed ID: 28989628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of Fermi's golden rule through imaging of light emission from atomic silver chains.
    Chen C; Bobisch CA; Ho W
    Science; 2009 Aug; 325(5943):981-5. PubMed ID: 19696347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of Fermi's Golden Rule.
    Micklitz T; Morningstar A; Altland A; Huse DA
    Phys Rev Lett; 2022 Sep; 129(14):140402. PubMed ID: 36240392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium Fermi's Golden Rule Charge Transfer Rate Constants in the Condensed Phase: The Linearized Semiclassical Method vs Classical Marcus Theory.
    Sun X; Geva E
    J Phys Chem A; 2016 May; 120(19):2976-90. PubMed ID: 26452042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermi's Golden Rule for Spontaneous Emission in Absorptive and Amplifying Media.
    Franke S; Ren J; Richter M; Knorr A; Hughes S
    Phys Rev Lett; 2021 Jul; 127(1):013602. PubMed ID: 34270314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonequilibrium Fermi's Golden Rule Charge Transfer Rates via the Linearized Semiclassical Method.
    Sun X; Geva E
    J Chem Theory Comput; 2016 Jun; 12(6):2926-41. PubMed ID: 27128887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inconsistency between linearized Thomas-Fermi approximation and electron-ionized impurity scattering rate in the first Born approximation.
    Marchetti G
    J Phys Condens Matter; 2018 Nov; 30(47):475701. PubMed ID: 30378569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of the Impact of Ionized Impurity Scattering on the Total Mobility in Si Nanowire Transistors.
    Sadi T; Medina-Bailon C; Nedjalkov M; Lee J; Badami O; Berrada S; Carrillo-Nunez H; Georgiev V; Selberherr S; Asenov A
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30609720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instanton theory for Fermi's golden rule and beyond.
    Ansari IM; Heller ER; Trenins G; Richardson JO
    Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200378. PubMed ID: 35341312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinduced Charge Transfer Dynamics in the Carotenoid-Porphyrin-C
    Hu Z; Tong Z; Cheung MS; Dunietz BD; Geva E; Sun X
    J Phys Chem B; 2020 Oct; 124(43):9579-9591. PubMed ID: 33059444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental limits on the electron mobility of β-Ga
    Kang Y; Krishnaswamy K; Peelaers H; Van de Walle CG
    J Phys Condens Matter; 2017 Jun; 29(23):234001. PubMed ID: 28443602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of different methods for calculating electronic transition rates.
    Kananenka AA; Sun X; Schubert A; Dunietz BD; Geva E
    J Chem Phys; 2018 Mar; 148(10):102304. PubMed ID: 29544297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect.
    Qiao PF; Mou S; Chuang SL
    Opt Express; 2012 Jan; 20(3):2319-34. PubMed ID: 22330471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of plasmonic hot carriers from d-bands in metallic nanoparticles.
    Román Castellanos L; Kahk JM; Hess O; Lischner J
    J Chem Phys; 2020 Mar; 152(10):104111. PubMed ID: 32171204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instanton formulation of Fermi's golden rule in the Marcus inverted regime.
    Heller ER; Richardson JO
    J Chem Phys; 2020 Jan; 152(3):034106. PubMed ID: 31968950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling time-coincident ultrafast electron transfer and solvation processes at molecule-semiconductor interfaces.
    Li L; Giokas PG; Kanai Y; Moran AM
    J Chem Phys; 2014 Jun; 140(23):234109. PubMed ID: 24952525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radio-Frequency Response and Contact of Impurities in a Quantum Gas.
    Liu WE; Shi ZY; Levinsen J; Parish MM
    Phys Rev Lett; 2020 Aug; 125(6):065301. PubMed ID: 32845677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact vs. asymptotic spectral densities in the Garg-Onuchic-Ambegaokar charge transfer model and its effect on Fermi's golden rule rate constants.
    Sun X; Geva E
    J Chem Phys; 2016 Jan; 144(4):044106. PubMed ID: 26827201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational Energy Relaxation of Thiocyanate Ions in Liquid-to-Supercritical Light and Heavy Water. A Fermi's Golden Rule Analysis.
    Czurlok D; Gleim J; Lindner J; Vöhringer P
    J Phys Chem Lett; 2014 Oct; 5(19):3373-9. PubMed ID: 26278447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.