These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 27401042)

  • 1. Correction: β-Sialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties.
    Huang J; Huang Z; Liu Y; Fang M; Chen K; Huang Y; Huang S; Ji H; Yang J; Wu X; Zhang S
    Nanoscale; 2016 Aug; 8(29):14279. PubMed ID: 27401042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β-Sialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties.
    Huang J; Huang Z; Liu Y; Fang M; Chen K; Huang Y; Huang S; Ji H; Yang J; Wu X; Zhang S
    Nanoscale; 2014 Jan; 6(1):424-32. PubMed ID: 24212249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cathodoluminescence study of one-dimensional free-standing widegap-semiconductor nanostructures: GaN nanotubes, Si3N4 nanobelts and ZnS/Si nanowires.
    Sekiguchi T; Hu J; Bando Y
    J Electron Microsc (Tokyo); 2004; 53(2):203-8. PubMed ID: 15180217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology-controlled synthesis and a comparative study of the physical properties of SnO2 nanostructures: from ultrathin nanowires to ultrawide nanobelts.
    Zhang Z; Gao J; Wong LM; Tao JG; Liao L; Zheng Z; Xing GZ; Peng HY; Yu T; Shen ZX; Huan CH; Wang SJ; Wu T
    Nanotechnology; 2009 Apr; 20(13):135605. PubMed ID: 19420508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The competition between template growth and catalytic growth of one-dimensional ZnS nanostructures: nanobelts or nanowires.
    You T; Wang J; Feng H; Chen K; Fan W; Zhang C; Miao R
    Dalton Trans; 2013 Jun; 42(21):7724-30. PubMed ID: 23549261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, growth mechanism, and light-emission properties of twisted SiO2 nanobelts and nanosprings.
    Zhang ZY; Wu XL; Xu LL; Shen JC; Siu GG; Chu PK
    J Chem Phys; 2008 Oct; 129(16):164702. PubMed ID: 19045293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Origin of the Band Gap Anomaly of Quaternary Alloy Cd(x)Zn(1-x)S(y)Se(1-y) Nanowires, Nanobelts, and Nanosheets in the Visible Spectrum.
    Kwon SJ; Jeong HM; Jung K; Ko DH; Ko H; Han IK; Kim GT; Park JG
    ACS Nano; 2015 May; 9(5):5486-99. PubMed ID: 25897466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring insoluble nanobelts into soluble anti-UV nanopotpourris.
    Wang J; Sun XW; Jiao Z; Khoo E; Lee PS; Ma J; Demir HV
    Nanoscale; 2011 Nov; 3(11):4742-5. PubMed ID: 21989823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single crystalline β-SiAlON nanowhiskers: preparation and enhanced properties at high temperature.
    Hou X; Yu Z; Chen Z; Zhao B; Chou KC
    Dalton Trans; 2012 Jun; 41(23):7127-33. PubMed ID: 22565532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe-catalyzed growth of one-dimensional α-Si3N4 nanostructures and their cathodoluminescence properties.
    Huang J; Huang Z; Yi S; Liu Y; Fang M; Zhang S
    Sci Rep; 2013 Dec; 3():3504. PubMed ID: 24336316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth mechanism of penniform BaWO4 nanostructures in catanionic reverse micelles involving polymers.
    Shi H; Wang X; Zhao N; Qi L; Ma J
    J Phys Chem B; 2006 Jan; 110(2):748-53. PubMed ID: 16471598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local defect-induced red-shift of cathodoluminescence in individual ZnS nanobelts.
    Liu BD; Yang B; Dierre B; Sekiguchi T; Jiang X
    Nanoscale; 2014 Nov; 6(21):12414-20. PubMed ID: 25238442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalyst-free vapour-solid technique for deposition of Bi2Te3 and Bi2Se3 nanowires/nanobelts with topological insulator properties.
    Andzane J; Kunakova G; Charpentier S; Hrkac V; Kienle L; Baitimirova M; Bauch T; Lombardi F; Erts D
    Nanoscale; 2015 Oct; 7(38):15935-44. PubMed ID: 26365282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic solvent-induced controllable crystallization of the inorganic salt Na3[Au(SO3)2] into ultralong nanobelts and hierarchical microstructures of nanowires.
    Liu S; Tian J; Wang L; Li H; Sun X
    Nanoscale; 2011 Apr; 3(4):1553-7. PubMed ID: 21283868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of planar defects in ZnO nanobelts and nanowires.
    Ding Y; Wang ZL
    Micron; 2009 Apr; 40(3):335-42. PubMed ID: 19081262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates.
    Kuo CL; Huang MH
    Nanotechnology; 2008 Apr; 19(15):155604. PubMed ID: 21825618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires.
    Wen X; Wang S; Ding Y; Wang ZL; Yang S
    J Phys Chem B; 2005 Jan; 109(1):215-20. PubMed ID: 16851007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures.
    Gu Z; Zhai T; Gao B; Sheng X; Wang Y; Fu H; Ma Y; Yao J
    J Phys Chem B; 2006 Nov; 110(47):23829-36. PubMed ID: 17125348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures.
    Shen G; Chen D; Chen PC; Zhou C
    ACS Nano; 2009 May; 3(5):1115-20. PubMed ID: 19354225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Property-performance control of multidimensional, hierarchical, single-crystalline ZnO nanoarchitectures.
    Cheng Q; Ostrikov KK
    Chemphyschem; 2012 Apr; 13(6):1535-41. PubMed ID: 22407732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.