These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 27401111)
21. Preliminary Molecular Survey of the Possible Presence of Lombardo L; Rizzo P; Novellis C; Vizzarri V Insects; 2021 May; 12(5):. PubMed ID: 34068247 [No Abstract] [Full Text] [Related]
22. Spittlebugs as vectors of Cornara D; Saponari M; Zeilinger AR; de Stradis A; Boscia D; Loconsole G; Bosco D; Martelli GP; Almeida RPP; Porcelli F J Pest Sci (2004); 2017; 90(2):521-530. PubMed ID: 28275326 [TBL] [Abstract][Full Text] [Related]
23. Seasonal abundance of Draeculacephala minerva and other Xylella fastidiosa vectors in California almond orchards and vineyards. Daane KM; Wistrom CM; Shapland EB; Sisterson MS J Econ Entomol; 2011 Apr; 104(2):367-74. PubMed ID: 21510181 [TBL] [Abstract][Full Text] [Related]
24. EPG combined with micro-CT and video recording reveals new insights on the feeding behavior of Philaenus spumarius. Cornara D; Garzo E; Morente M; Moreno A; Alba-Tercedor J; Fereres A PLoS One; 2018; 13(7):e0199154. PubMed ID: 30016320 [TBL] [Abstract][Full Text] [Related]
25. Efficacy of entomopathogenic fungi against Philaenus spumarius, the vector of Xylella fastidosa. Ganassi S; Di Domenico C; Altomare C; Grazioso P; Di Cillo P; Pietrantonio L; De Cristofaro A Pest Manag Sci; 2024 Sep; 80(9):4585-4593. PubMed ID: 38769855 [TBL] [Abstract][Full Text] [Related]
26. Degree-day-based model to predict egg hatching of Philaenus spumarius (Hemiptera: Aphrophoridae), the main vector of Xylella fastidiosa in Europe. Lago C; Giménez-Romero À; Morente M; Matías MA; Moreno A; Fereres A Environ Entomol; 2023 Jun; 52(3):350-359. PubMed ID: 37075473 [TBL] [Abstract][Full Text] [Related]
27. A biological control model to manage the vector and the infection of Xylella fastidiosa on olive trees. Liccardo A; Fierro A; Garganese F; Picciotti U; Porcelli F PLoS One; 2020; 15(4):e0232363. PubMed ID: 32353044 [TBL] [Abstract][Full Text] [Related]
28. Seasonal population dynamics of Draeculacephala minerva (Hemiptera: Cicadellidae) and transmission of Xylella fastidiosa. Cabrera-La Rosa JC; Johnson MW; Civerolo EL; Chen J; Groves RL J Econ Entomol; 2008 Aug; 101(4):1105-13. PubMed ID: 18767716 [TBL] [Abstract][Full Text] [Related]
29. Development of an FTP-LAMP assay based on TaqMan real-time PCR and LAMP for the specific detection of Xylella fastidiosa De Donno and mulberry strains in both plants and insect vectors. Elbeaino T; Incerti O; Dakroub H; Valentini F; Huang Q J Microbiol Methods; 2020 Aug; 175():105992. PubMed ID: 32589892 [TBL] [Abstract][Full Text] [Related]
30. A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Fierro A; Liccardo A; Porcelli F Sci Rep; 2019 Jun; 9(1):8723. PubMed ID: 31217527 [TBL] [Abstract][Full Text] [Related]
31. Potential of fungi of the genus Trichoderma for biocontrol of Philaenus spumarius, the insect vector for the quarantine bacterium Xylella fastidosa. Ganassi S; Domenico CD; Altomare C; Samuels GJ; Grazioso P; Cillo PD; Pietrantonio L; De Cristofaro A Pest Manag Sci; 2023 Feb; 79(2):719-728. PubMed ID: 36256490 [TBL] [Abstract][Full Text] [Related]
32. Habitat manipulation for sustainable management of Philaenus spumarius, the main vector of Xylella fastidiosa in Europe. Morente M; Ramírez M; Lago C; de Las Heras-Bravo D; Benito A; Moreno A; Fereres A Pest Manag Sci; 2022 Oct; 78(10):4183-4194. PubMed ID: 35690910 [TBL] [Abstract][Full Text] [Related]
33. Fluid dynamics in the functional foregut of xylem-sap feeding insects: A comparative study of two Xylella fastidiosa vectors. Ranieri E; Zitti G; Riolo P; Isidoro N; Ruschioni S; Brocchini M; Almeida RPP J Insect Physiol; 2020 Jan; 120():103995. PubMed ID: 31837986 [TBL] [Abstract][Full Text] [Related]
34. Ecology of the meadow spittlebug Albre J; García Carrasco JM; Gibernau M Bull Entomol Res; 2021 Apr; 111(2):246-256. PubMed ID: 33355061 [TBL] [Abstract][Full Text] [Related]
35. Feeding behaviour and mortality of Philaenus spumarius exposed to insecticides and their impact on Xylella fastidiosa transmission. Lago C; Cornara D; Minutillo SA; Moreno A; Fereres A Pest Manag Sci; 2022 Nov; 78(11):4841-4849. PubMed ID: 35908181 [TBL] [Abstract][Full Text] [Related]
36. Seasonal Abundance and Natural Inoculativity of Insect Vectors of Xylella fastidiosa in Oklahoma Tree Nurseries and Vineyards. Overall LM; Rebek EJ J Econ Entomol; 2015 Dec; 108(6):2536-45. PubMed ID: 26331482 [TBL] [Abstract][Full Text] [Related]
37. Xylella fastidiosa CoDiRO strain associated with the olive quick decline syndrome in southern Italy belongs to a clonal complex of the subspecies pauca that evolved in Central America. Marcelletti S; Scortichini M Microbiology (Reading); 2016 Dec; 162(12):2087-2098. PubMed ID: 27902416 [TBL] [Abstract][Full Text] [Related]
38. Controlling the Spatial Spread of a Xylella Epidemic. Aniţa S; Capasso V; Scacchi S Bull Math Biol; 2021 Feb; 83(4):32. PubMed ID: 33594616 [TBL] [Abstract][Full Text] [Related]
39. Seasonal increase of Xylella fastidiosa in hemiptera collected from central Texas vineyards. Mitchell FL; Brady J; Bextine B; Lauzière I J Econ Entomol; 2009 Oct; 102(5):1743-9. PubMed ID: 19886437 [TBL] [Abstract][Full Text] [Related]
40. A Compartmental Model for Giménez-Romero À; Moralejo E; Matías MA Phytopathology; 2023 Sep; 113(9):1686-1696. PubMed ID: 36774557 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]