BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 27401559)

  • 1. Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs.
    Kumar P; Hellen CU; Pestova TV
    Genes Dev; 2016 Jul; 30(13):1573-88. PubMed ID: 27401559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.
    Svitkin YV; Herdy B; Costa-Mattioli M; Gingras AC; Raught B; Sonenberg N
    Mol Cell Biol; 2005 Dec; 25(23):10556-65. PubMed ID: 16287867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes.
    Susor A; Jelínková L; Karabínová P; Torner H; Tomek W; Kovárová H; Kubelka M
    Mol Reprod Dev; 2008 Dec; 75(12):1716-25. PubMed ID: 18386287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Migration of Small Ribosomal Subunits on the 5' Untranslated Regions of Capped Messenger RNA.
    Shirokikh NE; Dutikova YS; Staroverova MA; Hannan RD; Preiss T
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31510048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling 40S ribosome recruitment to modification of a cap-binding initiation factor by eIF3 subunit e.
    Walsh D; Mohr I
    Genes Dev; 2014 Apr; 28(8):835-40. PubMed ID: 24736843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of translation initiation in eukaryotes.
    Pestova TV; Kolupaeva VG; Lomakin IB; Pilipenko EV; Shatsky IN; Agol VI; Hellen CU
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7029-36. PubMed ID: 11416183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. eIF4G dramatically enhances the binding of eIF4E to the mRNA 5'-cap structure.
    Haghighat A; Sonenberg N
    J Biol Chem; 1997 Aug; 272(35):21677-80. PubMed ID: 9268293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast.
    Jivotovskaya AV; Valásek L; Hinnebusch AG; Nielsen KH
    Mol Cell Biol; 2006 Feb; 26(4):1355-72. PubMed ID: 16449648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of the host translation initiation complex eIF4F by DNA viruses.
    Walsh D
    Biochem Soc Trans; 2010 Dec; 38(6):1511-6. PubMed ID: 21118117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-tethering assay and eIF4G:eIF4A obligate dimer design uncovers multiple eIF4F functional complexes.
    Robert F; Cencic R; Cai R; Schmeing TM; Pelletier J
    Nucleic Acids Res; 2020 Sep; 48(15):8562-8575. PubMed ID: 32749456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation.
    Lamphear BJ; Kirchweger R; Skern T; Rhoads RE
    J Biol Chem; 1995 Sep; 270(37):21975-83. PubMed ID: 7665619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human eukaryotic initiation factor 4G directly binds the 40S ribosomal subunit to promote efficient translation.
    Villa N; Fraser CS
    J Biol Chem; 2024 Apr; 300(5):107242. PubMed ID: 38569933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 3' cap-independent translation element of Barley yellow dwarf virus binds eIF4F via the eIF4G subunit to initiate translation.
    Treder K; Kneller EL; Allen EM; Wang Z; Browning KS; Miller WA
    RNA; 2008 Jan; 14(1):134-47. PubMed ID: 18025255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic RNA binding by the eukaryotic initiation factor 4F depends on a minimal RNA length but not on the m7G cap.
    Kaye NM; Emmett KJ; Merrick WC; Jankowsky E
    J Biol Chem; 2009 Jun; 284(26):17742-50. PubMed ID: 19414591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation.
    Lee AS; Kranzusch PJ; Doudna JA; Cate JH
    Nature; 2016 Aug; 536(7614):96-9. PubMed ID: 27462815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap.
    Yanagiya A; Svitkin YV; Shibata S; Mikami S; Imataka H; Sonenberg N
    Mol Cell Biol; 2009 Mar; 29(6):1661-9. PubMed ID: 19114555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection.
    Pestova TV; Kolupaeva VG
    Genes Dev; 2002 Nov; 16(22):2906-22. PubMed ID: 12435632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state.
    Ptushkina M; von der Haar T; Karim MM; Hughes JM; McCarthy JE
    EMBO J; 1999 Jul; 18(14):4068-75. PubMed ID: 10406811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific domains in yeast translation initiation factor eIF4G strongly bias RNA unwinding activity of the eIF4F complex toward duplexes with 5'-overhangs.
    Rajagopal V; Park EH; Hinnebusch AG; Lorsch JR
    J Biol Chem; 2012 Jun; 287(24):20301-12. PubMed ID: 22467875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High affinity RNA for mammalian initiation factor 4E interferes with mRNA-cap binding and inhibits translation.
    Mochizuki K; Oguro A; Ohtsu T; Sonenberg N; Nakamura Y
    RNA; 2005 Jan; 11(1):77-89. PubMed ID: 15611299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.