These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 27402067)

  • 61. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress.
    Kumar GK; Rai V; Sharma SD; Ramakrishnan DP; Peng YJ; Souvannakitti D; Prabhakar NR
    J Physiol; 2006 Aug; 575(Pt 1):229-39. PubMed ID: 16777938
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adrenomedullary function is severely impaired in 21-hydroxylase-deficient mice.
    Bornstein SR; Tajima T; Eisenhofer G; Haidan A; Aguilera G
    FASEB J; 1999 Jul; 13(10):1185-94. PubMed ID: 10385609
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Absence of catecholamine uptake mechanism in the isolated perfused adrenal gland of the rat.
    Wakade AR; Wakade TD
    Neurosci Lett; 1984 Sep; 50(1-3):139-43. PubMed ID: 6493620
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Contrasting effects of intermittent and continuous hypoxia on low O(2) evoked catecholamine secretion from neonatal rat chromaffin cells.
    Souvannakitti D; Kumar GK; Fox A; Prabhakar NR
    Adv Exp Med Biol; 2009; 648():345-9. PubMed ID: 19536498
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Responses of adrenal sympathetic preganglionic neurons to stimulation of cardiopulmonary receptors.
    Cao WH; Morrison SF
    Brain Res; 2000 Dec; 887(1):46-52. PubMed ID: 11134588
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Reduced calcium current density in female versus male mouse adrenal chromaffin cells in situ.
    Chan SA; Hill J; Smith C
    Cell Calcium; 2012; 52(3-4):313-20. PubMed ID: 22551621
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of oxytocin on adreno-medullary catecholamine synthesis, uptake and storage in rats exposed to chronic isolation stress.
    Jovanovic P; Stefanovic B; Spasojevic N; Puskas N; Dronjak S
    Endocr Res; 2016 May; 41(2):124-31. PubMed ID: 26726927
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Continuous monitoring of catecholamine release from perfused cat adrenals.
    Borges R; Sala F; García AG
    J Neurosci Methods; 1986 Jun; 16(4):289-300. PubMed ID: 3736118
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effects of hypophysectomy and metyrapone on the catecholamine content and volumes of adrenaline- and noradrenaline-storing cells in the rat adrenal medulla.
    Coupland RE; Tomlinson A; Crowe J; Brindley DN
    J Endocrinol; 1984 Jun; 101(3):345-52. PubMed ID: 6726110
    [TBL] [Abstract][Full Text] [Related]  

  • 70. miR-375 negatively regulates the synthesis and secretion of catecholamines by targeting Sp1 in rat adrenal medulla.
    Gai Y; Zhang J; Wei C; Cao W; Cui Y; Cui S
    Am J Physiol Cell Physiol; 2017 May; 312(5):C663-C672. PubMed ID: 28356269
    [TBL] [Abstract][Full Text] [Related]  

  • 71. On the uptake of exogenous catecholamines by adrenal chromaffin cells and nerve endings.
    Kent C; Coupland RE
    Cell Tissue Res; 1981; 221(2):371-83. PubMed ID: 6796272
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion.
    Harada K; Matsuoka H; Miyata H; Matsui M; Inoue M
    Br J Pharmacol; 2015 Mar; 172(5):1348-59. PubMed ID: 25393049
    [TBL] [Abstract][Full Text] [Related]  

  • 73. 5 ns electric pulses induce Ca
    Zaklit J; Cabrera A; Shaw A; Aoun R; Vernier PT; Leblanc N; Craviso GL
    Bioelectrochemistry; 2021 Aug; 140():107830. PubMed ID: 33965669
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Brain RVD-haemopressin, a haemoglobin-derived peptide, inhibits bombesin-induced central activation of adrenomedullary outflow in the rat.
    Tanaka K; Shimizu T; Yanagita T; Nemoto T; Nakamura K; Taniuchi K; Dimitriadis F; Yokotani K; Saito M
    Br J Pharmacol; 2014 Jan; 171(1):202-13. PubMed ID: 24138638
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Regional distribution of free and sulfoconjugated catecholamines in the bovine adrenal cortex and medulla.
    Racz K; Buu NT; Kuchel O
    Can J Physiol Pharmacol; 1984 Jun; 62(6):622-6. PubMed ID: 6589027
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spinal CSF from rats with painful peripheral neuropathy evokes catecholamine release from chromaffin cells in vitro.
    Hentall ID; Sagen J
    Neurosci Lett; 2000 Jun; 286(2):95-8. PubMed ID: 10825645
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Human immune cells mediate catecholamine secretion from adrenal chromaffin cells.
    Lujan HJ; Mathews HL; Gamelli RL; Jones SB
    Crit Care Med; 1998 Jul; 26(7):1218-24. PubMed ID: 9671372
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Decreased catecholamine secretion from the adrenal medullae of chronically diabetic BB-Wistar rats.
    Wilke RA; Riley DA; Lelkes PI; Hillard CJ
    Diabetes; 1993 Jun; 42(6):862-8. PubMed ID: 8495810
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Single-vesicle catecholamine release has greater quantal content and faster kinetics in chromaffin cells from hypertensive, as compared with normotensive, rats.
    Miranda-Ferreira R; de Pascual R; de Diego AM; Caricati-Neto A; Gandía L; Jurkiewicz A; García AG
    J Pharmacol Exp Ther; 2008 Feb; 324(2):685-93. PubMed ID: 17962518
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Chronic cardiac pressure overload induces adrenal medulla hypertrophy and increased catecholamine synthesis.
    Schneider J; Lother A; Hein L; Gilsbach R
    Basic Res Cardiol; 2011 Jun; 106(4):591-602. PubMed ID: 21547520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.