These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Membrane lipids protected from oxidation by red wine tannins: a proton NMR study. Furlan AL; Jobin ML; Buchoux S; Grélard A; Dufourc EJ; Géan J Biochimie; 2014 Dec; 107 Pt A():82-90. PubMed ID: 25063276 [TBL] [Abstract][Full Text] [Related]
5. Wine tannins and their aggregation/release with lipids and proteins: Review and perspectives for neurodegenerative diseases. Dufourc EJ Biophys Chem; 2024 Apr; 307():107178. PubMed ID: 38277878 [TBL] [Abstract][Full Text] [Related]
6. New Insights into Wine Taste: Impact of Dietary Lipids on Sensory Perceptions of Grape Tannins. Saad A; Bousquet J; Fernandez-Castro N; Loquet A; Géan J J Agric Food Chem; 2021 Mar; 69(10):3165-3174. PubMed ID: 33655748 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamics of grape and wine tannin interaction with polyproline: implications for red wine astringency. McRae JM; Falconer RJ; Kennedy JA J Agric Food Chem; 2010 Dec; 58(23):12510-8. PubMed ID: 21070019 [TBL] [Abstract][Full Text] [Related]
8. High-performance liquid chromatography determination of red wine tannin stickiness. Revelette MR; Barak JA; Kennedy JA J Agric Food Chem; 2014 Jul; 62(28):6626-31. PubMed ID: 24959945 [TBL] [Abstract][Full Text] [Related]
9. Grape variety effect on proanthocyanidin composition and sensory perception of skin and seed tannin extracts from bordeaux wine grapes (Cabernet Sauvignon and Merlot) for two consecutive vintages (2006 and 2007). Chira K; Schmauch G; Saucier C; Fabre S; Teissedre PL J Agric Food Chem; 2009 Jan; 57(2):545-53. PubMed ID: 19105642 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol. Obreque-Slíer E; Peña-Neira A; López-Solís R J Agric Food Chem; 2010 Mar; 58(6):3729-35. PubMed ID: 20158256 [TBL] [Abstract][Full Text] [Related]
11. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency. Ma W; Waffo-Teguo P; Jourdes M; Li H; Teissedre PL PLoS One; 2016; 11(8):e0161095. PubMed ID: 27518822 [TBL] [Abstract][Full Text] [Related]
12. Sensory properties of wine tannin fractions: implications for in-mouth sensory properties. McRae JM; Schulkin A; Kassara S; Holt HE; Smith PA J Agric Food Chem; 2013 Jan; 61(3):719-27. PubMed ID: 23289627 [TBL] [Abstract][Full Text] [Related]
13. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects. Cala O; Pinaud N; Simon C; Fouquet E; Laguerre M; Dufourc EJ; Pianet I FASEB J; 2010 Nov; 24(11):4281-90. PubMed ID: 20605948 [TBL] [Abstract][Full Text] [Related]
14. Rheological study of tannin and protein interactions based on model systems. Brossard N; Bordeu E; Ibáñez RA; Chen J; Osorio F J Texture Stud; 2020 Aug; 51(4):585-592. PubMed ID: 32110834 [TBL] [Abstract][Full Text] [Related]
15. Effect of yeast strain and some nutritional factors on tannin composition and potential astringency of model wines. Rinaldi A; Blaiotta G; Aponte M; Moio L Food Microbiol; 2016 Feb; 53(Pt B):128-34. PubMed ID: 26678140 [TBL] [Abstract][Full Text] [Related]
16. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding. Cala O; Dufourc EJ; Fouquet E; Manigand C; Laguerre M; Pianet I Langmuir; 2012 Dec; 28(50):17410-8. PubMed ID: 23173977 [TBL] [Abstract][Full Text] [Related]
17. Effect of antimicrobial peptide on the dynamics of phosphocholine membrane: role of cholesterol and physical state of bilayer. Sharma VK; Mamontov E; Anunciado DB; O'Neill H; Urban VS Soft Matter; 2015 Sep; 11(34):6755-67. PubMed ID: 26212615 [TBL] [Abstract][Full Text] [Related]
18. Ethanol Concentration Influences the Mechanisms of Wine Tannin Interactions with Poly(L-proline) in Model Wine. McRae JM; Ziora ZM; Kassara S; Cooper MA; Smith PA J Agric Food Chem; 2015 May; 63(17):4345-52. PubMed ID: 25877783 [TBL] [Abstract][Full Text] [Related]
19. Interaction of polyphenols with model membranes: Putative implications to mouthfeel perception. Reis A; Soares S; Sousa CF; Dias R; Gameiro P; Soares S; de Freitas V Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183133. PubMed ID: 31785236 [TBL] [Abstract][Full Text] [Related]
20. First evidence of epicatechin vanillate in grape seed and red wine. Ma W; Waffo-Téguo P; Jourdes M; Li H; Teissedre PL Food Chem; 2018 Sep; 259():304-310. PubMed ID: 29680058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]