These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 27402289)
21. From Flavanols Biosynthesis to Wine Tannins: What Place for Grape Seeds? Rousserie P; Rabot A; Geny-Denis L J Agric Food Chem; 2019 Feb; 67(5):1325-1343. PubMed ID: 30632368 [TBL] [Abstract][Full Text] [Related]
22. Tannin quantification in red grapes and wine: comparison of polysaccharide- and protein-based tannin precipitation techniques and their ability to model wine astringency. Mercurio MD; Smith PA J Agric Food Chem; 2008 Jul; 56(14):5528-37. PubMed ID: 18572914 [TBL] [Abstract][Full Text] [Related]
23. Red Wine Tannin Structure-Activity Relationships during Fermentation and Maceration. Yacco RS; Watrelot AA; Kennedy JA J Agric Food Chem; 2016 Feb; 64(4):860-9. PubMed ID: 26766301 [TBL] [Abstract][Full Text] [Related]
24. Influence of Grape Seeds and Stems on Wine Composition and Astringency. Pascual O; González-Royo E; Gil M; Gómez-Alonso S; García-Romero E; Canals JM; Hermosín-Gutíerrez I; Zamora F J Agric Food Chem; 2016 Aug; 64(34):6555-66. PubMed ID: 27523714 [TBL] [Abstract][Full Text] [Related]
25. Relationship of Soluble Grape-Derived Proteins to Condensed Tannin Extractability during Red Wine Fermentation. Springer LF; Chen LA; Stahlecker AC; Cousins P; Sacks GL J Agric Food Chem; 2016 Nov; 64(43):8191-8199. PubMed ID: 27696840 [TBL] [Abstract][Full Text] [Related]
27. A thermodynamic study of the effects of cholesterol on the interaction between liposomes and ethanol. Trandum C; Westh P; Jorgensen K; Mouritsen OG Biophys J; 2000 May; 78(5):2486-92. PubMed ID: 10777745 [TBL] [Abstract][Full Text] [Related]
28. Understanding the Relationship between Red Wine Matrix, Tannin Activity, and Sensory Properties. Watrelot AA; Byrnes NK; Heymann H; Kennedy JA J Agric Food Chem; 2016 Nov; 64(47):9116-9123. PubMed ID: 27802589 [TBL] [Abstract][Full Text] [Related]
29. HPLC retention thermodynamics of grape and wine tannins. Barak JA; Kennedy JA J Agric Food Chem; 2013 May; 61(18):4270-7. PubMed ID: 23565723 [TBL] [Abstract][Full Text] [Related]
30. Bitterness in wine. Noble AC Physiol Behav; 1994 Dec; 56(6):1251-5. PubMed ID: 7878098 [TBL] [Abstract][Full Text] [Related]
31. Comparison of extraction protocols to determine differences in wine-extractable tannin and anthocyanin in Vitis vinifera L. cv. Shiraz and Cabernet Sauvignon grapes. Bindon KA; Kassara S; Cynkar WU; Robinson EM; Scrimgeour N; Smith PA J Agric Food Chem; 2014 May; 62(20):4558-70. PubMed ID: 24773241 [TBL] [Abstract][Full Text] [Related]
32. Association of ethanol with lipid membranes containing cholesterol, sphingomyelin and ganglioside: a titration calorimetry study. Trandum C; Westh P; Jørgensen K; Mouritsen OG Biochim Biophys Acta; 1999 Aug; 1420(1-2):179-88. PubMed ID: 10446301 [TBL] [Abstract][Full Text] [Related]
33. Influence of Chemical Species on Polyphenol-Protein Interactions Related to Wine Astringency. Ramos-Pineda AM; Carpenter GH; García-Estévez I; Escribano-Bailón MT J Agric Food Chem; 2020 Mar; 68(10):2948-2954. PubMed ID: 30854856 [TBL] [Abstract][Full Text] [Related]
34. Interaction of epicatechin gallate with phospholipid membranes as revealed by solid-state NMR spectroscopy. Uekusa Y; Kamihira-Ishijima M; Sugimoto O; Ishii T; Kumazawa S; Nakamura K; Tanji K; Naito A; Nakayama T Biochim Biophys Acta; 2011 Jun; 1808(6):1654-60. PubMed ID: 21352801 [TBL] [Abstract][Full Text] [Related]
35. Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins. Carvalho E; Mateus N; Plet B; Pianet I; Dufourc E; De Freitas V J Agric Food Chem; 2006 Nov; 54(23):8936-44. PubMed ID: 17090144 [TBL] [Abstract][Full Text] [Related]
36. Toward the optical tongue: flow-through sensing of tannin-protein interactions based on FTIR spectroscopy. Edelmann A; Lendl B J Am Chem Soc; 2002 Dec; 124(49):14741-7. PubMed ID: 12465987 [TBL] [Abstract][Full Text] [Related]
37. High throughput analysis of red wine and grape phenolics-adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format. Mercurio MD; Dambergs RG; Herderich MJ; Smith PA J Agric Food Chem; 2007 Jun; 55(12):4651-7. PubMed ID: 17497877 [TBL] [Abstract][Full Text] [Related]
38. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan. Mekoue Nguela J; Poncet-Legrand C; Sieczkowski N; Vernhet A Food Chem; 2016 Nov; 210():671-82. PubMed ID: 27211695 [TBL] [Abstract][Full Text] [Related]
39. Chemical and sensory characterization of DOC red wines from Marche (Italy) related to vintage and grape cultivars. Boselli E; Boulton RB; Thorngate JH; Frega NG J Agric Food Chem; 2004 Jun; 52(12):3843-54. PubMed ID: 15186106 [TBL] [Abstract][Full Text] [Related]
40. Developing novel oenological tannins from 44 plants sources by assessing astringency and color in model wine. Cheng C; Liu P; Zhao P; Du G; Wang S; Liu H; Cao X; Zhao Q; Wang X J Sci Food Agric; 2023 Feb; 103(3):1499-1513. PubMed ID: 36189836 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]