These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 27402303)

  • 1. Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals.
    Mason JA; Laramy CR; Lai CT; O'Brien MN; Lin QY; Dravid VP; Schatz GC; Mirkin CA
    J Am Chem Soc; 2016 Jul; 138(28):8722-5. PubMed ID: 27402303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Responsive Nanoparticle Superlattices with Tunable DNA Bonds.
    Zhu J; Kim Y; Lin H; Wang S; Mirkin CA
    J Am Chem Soc; 2018 Apr; 140(15):5061-5064. PubMed ID: 29624374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivalent Cation-Induced Actuation of DNA-Mediated Colloidal Superlattices.
    Samanta D; Iscen A; Laramy CR; Ebrahimi SB; Bujold KE; Schatz GC; Mirkin CA
    J Am Chem Soc; 2019 Dec; 141(51):19973-19977. PubMed ID: 31840998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating the Bond Strength of DNA-Nanoparticle Superlattices.
    Seo SE; Wang MX; Shade CM; Rouge JL; Brown KA; Mirkin CA
    ACS Nano; 2016 Feb; 10(2):1771-9. PubMed ID: 26699102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitutable nanoparticle superlattices.
    Radha B; Senesi AJ; O'Brien MN; Wang MX; Auyeung E; Lee B; Mirkin CA
    Nano Lett; 2014; 14(4):2162-7. PubMed ID: 24641553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible C-C Bonds: Reversible Expansion, Contraction, Formation, and Scission of Extremely Elongated Single Bonds.
    Shimajiri T; Suzuki T; Ishigaki Y
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22252-22257. PubMed ID: 32830906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatically Controlled Vacancies in Nanoparticle Crystals.
    Barnaby SN; Ross MB; Thaner RV; Lee B; Schatz GC; Mirkin CA
    Nano Lett; 2016 Aug; 16(8):5114-9. PubMed ID: 27428463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamically interchangeable nanoparticle superlattices through the use of nucleic acid-based allosteric effectors.
    Kim Y; Macfarlane RJ; Mirkin CA
    J Am Chem Soc; 2013 Jul; 135(28):10342-5. PubMed ID: 23822216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic tuning of DNA-nanoparticle superlattices by molecular intercalation of double helix.
    Pal S; Zhang Y; Kumar SK; Gang O
    J Am Chem Soc; 2015 Apr; 137(12):4030-3. PubMed ID: 25751093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional emission from dye-functionalized plasmonic DNA superlattice microcavities.
    Park DJ; Ku JC; Sun L; Lethiec CM; Stern NP; Schatz GC; Mirkin CA
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):457-461. PubMed ID: 28053232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling structure and porosity in catalytic nanoparticle superlattices with DNA.
    Auyeung E; Morris W; Mondloch JE; Hupp JT; Farha OK; Mirkin CA
    J Am Chem Soc; 2015 Feb; 137(4):1658-62. PubMed ID: 25611764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photothermal patterning of microgel/gold nanoparticle composite colloidal crystals.
    Jones CD; Lyon LA
    J Am Chem Soc; 2003 Jan; 125(2):460-5. PubMed ID: 12517159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-by-Layer Approach to (2+1)D Photonic Crystal Superlattice with Enhanced Crystalline Integrity.
    Zhang L; Xiong Z; Shan L; Zheng L; Wei T; Yan Q
    Small; 2015 Oct; 11(37):4910-21. PubMed ID: 26179658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.
    Stimulak M; Ravnik M
    Soft Matter; 2014 Sep; 10(33):6339-46. PubMed ID: 25034860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-Nanoparticle Tinkertoys.
    Chandrasekaran AR
    Chembiochem; 2016 Jun; 17(12):1090-2. PubMed ID: 27080095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating Nanoparticle Superlattice Structure Using Proteins with Tunable Bond Distributions.
    McMillan JR; Brodin JD; Millan JA; Lee B; Olvera de la Cruz M; Mirkin CA
    J Am Chem Soc; 2017 Feb; 139(5):1754-1757. PubMed ID: 28121437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent Acoustic Phonons in Colloidal Semiconductor Nanocrystal Superlattices.
    Poyser CL; Czerniuk T; Akimov A; Diroll BT; Gaulding EA; Salasyuk AS; Kent AJ; Yakovlev DR; Bayer M; Murray CB
    ACS Nano; 2016 Jan; 10(1):1163-9. PubMed ID: 26696021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.
    Burkert K; Neumann T; Wang J; Jonas U; Knoll W; Ottleben H
    Langmuir; 2007 Mar; 23(6):3478-84. PubMed ID: 17269810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial colloidal liquid metacrystals by shearing microlithography.
    Jiang Y; Guo F; Xu Z; Gao W; Gao C
    Nat Commun; 2019 Sep; 10(1):4111. PubMed ID: 31511509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal stability of two-dimensional gold nanocrystal superlattices.
    Robel I; Lin XM; Sprung M; Wang J
    J Phys Condens Matter; 2009 Jul; 21(26):264011. PubMed ID: 21828459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.