BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 27402384)

  • 1. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds.
    Toomey MB; Lind O; Frederiksen R; Curley RW; Riedl KM; Wilby D; Schwartz SJ; Witt CC; Harrison EH; Roberts NW; Vorobyev M; McGraw KJ; Cornwall MC; Kelber A; Corbo JC
    Elife; 2016 Jul; 5():. PubMed ID: 27402384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Owls lack UV-sensitive cone opsin and red oil droplets, but see UV light at night: Retinal transcriptomes and ocular media transmittance.
    Höglund J; Mitkus M; Olsson P; Lind O; Drews A; Bloch NI; Kelber A; Strandh M
    Vision Res; 2019 May; 158():109-119. PubMed ID: 30825468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual pigments in a palaeognath bird, the emu Dromaius novaehollandiae: implications for spectral sensitivity and the origin of ultraviolet vision.
    Hart NS; Mountford JK; Davies WI; Collin SP; Hunt DM
    Proc Biol Sci; 2016 Jul; 283(1834):. PubMed ID: 27383819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S cones: Evolution, retinal distribution, development, and spectral sensitivity.
    Hunt DM; Peichl L
    Vis Neurosci; 2014 Mar; 31(2):115-38. PubMed ID: 23895771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avian visual pigments: characteristics, spectral tuning, and evolution.
    Hart NS; Hunt DM
    Am Nat; 2007 Jan; 169 Suppl 1():S7-26. PubMed ID: 19426092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots.
    van Hazel I; Sabouhanian A; Day L; Endler JA; Chang BS
    BMC Evol Biol; 2013 Nov; 13():250. PubMed ID: 24499383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A complex carotenoid palette tunes avian colour vision.
    Toomey MB; Collins AM; Frederiksen R; Cornwall MC; Timlin JA; Corbo JC
    J R Soc Interface; 2015 Oct; 12(111):20150563. PubMed ID: 26446559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-wavelength-sensitive 2 (Sws2) visual photopigment models combined with atomistic molecular simulations to predict spectral peaks of absorbance.
    Patel D; Barnes JE; Davies WIL; Stenkamp DL; Patel JS
    PLoS Comput Biol; 2020 Oct; 16(10):e1008212. PubMed ID: 33085657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors.
    Hart NS; Vorobyev M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Apr; 191(4):381-92. PubMed ID: 15711964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds.
    Lind O; Delhey K
    J Evol Biol; 2015 Mar; 28(3):715-22. PubMed ID: 25664902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual ecology of the Australian lungfish (Neoceratodus forsteri).
    Hart NS; Bailes HJ; Vorobyev M; Marshall NJ; Collin SP
    BMC Ecol; 2008 Dec; 8():21. PubMed ID: 19091135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phylogenetic distribution of ultraviolet sensitivity in birds.
    Ödeen A; Håstad O
    BMC Evol Biol; 2013 Feb; 13():36. PubMed ID: 23394614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological aspects of bird colouration and avian colour vision including ultraviolet range.
    Finger E; Burkhardt D
    Vision Res; 1994 Jun; 34(11):1509-14. PubMed ID: 8023462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coloured oil droplets enhance colour discrimination.
    Vorobyev M
    Proc Biol Sci; 2003 Jun; 270(1521):1255-61. PubMed ID: 12816638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids.
    Parry JW; Carleton KL; Spady T; Carboo A; Hunt DM; Bowmaker JK
    Curr Biol; 2005 Oct; 15(19):1734-9. PubMed ID: 16213819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration.
    Odeen A; Pruett-Jones S; Driskell AC; Armenta JK; Håstad O
    Proc Biol Sci; 2012 Apr; 279(1732):1269-76. PubMed ID: 21976683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral sensitivity of cone photoreceptors and opsin expression in two colour-divergent lineages of the lizard Ctenophorus decresii.
    Yewers MS; McLean CA; Moussalli A; Stuart-Fox D; Bennett AT; Knott B
    J Exp Biol; 2015 May; 218(Pt 10):1556-63. PubMed ID: 25827838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oil droplets of bird eyes: microlenses acting as spectral filters.
    Stavenga DG; Wilts BD
    Philos Trans R Soc Lond B Biol Sci; 2014; 369(1636):20130041. PubMed ID: 24395968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.
    Jacobs GH
    Vis Neurosci; 2013 Mar; 30(1-2):39-53. PubMed ID: 23286388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.