BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 27402756)

  • 1. Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation.
    Velásquez C; Cheng E; Shuda M; Lee-Oesterreich PJ; Pogge von Strandmann L; Gritsenko MA; Jacobs JM; Moore PS; Chang Y
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8466-71. PubMed ID: 27402756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CDK1 substitutes for mTOR kinase to activate mitotic cap-dependent protein translation.
    Shuda M; Velásquez C; Cheng E; Cordek DG; Kwun HJ; Chang Y; Moore PS
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5875-82. PubMed ID: 25883264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitosis-related phosphorylation of the eukaryotic translation suppressor 4E-BP1 and its interaction with eukaryotic translation initiation factor 4E (eIF4E).
    Sun R; Cheng E; Velásquez C; Chang Y; Moore PS
    J Biol Chem; 2019 Aug; 294(31):11840-11852. PubMed ID: 31201269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability.
    Choi SH; Martinez TF; Kim S; Donaldson C; Shokhirev MN; Saghatelian A; Jones KA
    Genes Dev; 2019 Apr; 33(7-8):418-435. PubMed ID: 30819820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitotic CDK1 and 4E-BP1 II: A single phosphomimetic mutation in 4E-BP1 induces glucose intolerance in mice.
    Cao S; Jurczak MJ; Shuda Y; Sun R; Shuda M; Chang Y; Moore PS
    PLoS One; 2023; 18(3):e0282914. PubMed ID: 36897840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator.
    Shuda M; Kwun HJ; Feng H; Chang Y; Moore PS
    J Clin Invest; 2011 Sep; 121(9):3623-34. PubMed ID: 21841310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of 4E-BP1 activity in the mammalian oocyte.
    Jansova D; Koncicka M; Tetkova A; Cerna R; Malik R; Del Llano E; Kubelka M; Susor A
    Cell Cycle; 2017 May; 16(10):927-939. PubMed ID: 28272965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association between LRRK2 and 4E-BP1 protein levels in normal and malignant cells.
    Pons B; Armengol G; Livingstone M; López L; Coch L; Sonenberg N; Ramón y Cajal S
    Oncol Rep; 2012 Jan; 27(1):225-31. PubMed ID: 21922152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1).
    Heesom KJ; Gampel A; Mellor H; Denton RM
    Curr Biol; 2001 Sep; 11(17):1374-9. PubMed ID: 11553333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitotic CDK1 and 4E-BP1 I: Loss of 4E-BP1 serine 82 phosphorylation promotes proliferative polycystic disease and lymphoma in aged or sublethally irradiated mice.
    Sun R; Guo S; Shuda Y; Chakka AB; Rigatti LH; Zhao G; Ali MAE; Park CY; Chandran U; Yu J; Bakkenist CJ; Shuda M; Moore PS; Chang Y
    PLoS One; 2023; 18(5):e0282722. PubMed ID: 37145994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional interaction between RAFT1/FRAP/mTOR and protein kinase cdelta in the regulation of cap-dependent initiation of translation.
    Kumar V; Pandey P; Sabatini D; Kumar M; Majumder PK; Bharti A; Carmichael G; Kufe D; Kharbanda S
    EMBO J; 2000 Mar; 19(5):1087-97. PubMed ID: 10698949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Akt/mTOR/4E-BP1 pathway signal activation and mutations of PIK3CA in Merkel cell polyomavirus-positive and Merkel cell polyomavirus-negative carcinomas.
    Iwasaki T; Matsushita M; Nonaka D; Kuwamoto S; Kato M; Murakami I; Nagata K; Nakajima H; Sano S; Hayashi K
    Hum Pathol; 2015 Feb; 46(2):210-6. PubMed ID: 25466966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation dynamics of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) is discordant with its potential to interact with eukaryotic initiation factor 4E (eIF4E).
    Showkat M; Beigh MA; Bhat BB; Batool A; Andrabi KI
    Cell Signal; 2014 Oct; 26(10):2117-21. PubMed ID: 24975846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RhoE inhibits 4E-BP1 phosphorylation and eIF4E function impairing cap-dependent translation.
    Villalonga P; Fernández de Mattos S; Ridley AJ
    J Biol Chem; 2009 Dec; 284(51):35287-96. PubMed ID: 19850923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins.
    Wang X; Beugnet A; Murakami M; Yamanaka S; Proud CG
    Mol Cell Biol; 2005 Apr; 25(7):2558-72. PubMed ID: 15767663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of the dual activity of 4EGI-1: Dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1.
    Sekiyama N; Arthanari H; Papadopoulos E; Rodriguez-Mias RA; Wagner G; Léger-Abraham M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4036-45. PubMed ID: 26170285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenethyl isothiocyanate, a cancer chemopreventive constituent of cruciferous vegetables, inhibits cap-dependent translation by regulating the level and phosphorylation of 4E-BP1.
    Hu J; Straub J; Xiao D; Singh SV; Yang HS; Sonenberg N; Vatsyayan J
    Cancer Res; 2007 Apr; 67(8):3569-73. PubMed ID: 17440067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paclitaxel induces the phosphorylation of the eukaryotic translation initiation factor 4E-binding protein 1 through a Cdk1-dependent mechanism.
    Greenberg VL; Zimmer SG
    Oncogene; 2005 Jul; 24(30):4851-60. PubMed ID: 15897904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).
    Liu J; Stevens PD; Eshleman NE; Gao T
    J Biol Chem; 2013 Aug; 288(32):23225-33. PubMed ID: 23814053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mTOR target 4E-BP1 contributes to differential protein expression during normoxia and hypoxia through changes in mRNA translation efficiency.
    Magagnin MG; van den Beucken T; Sergeant K; Lambin P; Koritzinsky M; Devreese B; Wouters BG
    Proteomics; 2008 Mar; 8(5):1019-28. PubMed ID: 18219697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.