These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27402929)

  • 1. Magnetic relaxation dynamics driven by the first-order character of magnetocaloric La(Fe,Mn,Si)13.
    Lovell E; Bratko M; Caplin AD; Barcza A; Katter M; Ghivelder L; Cohen LF
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mastering hysteresis in magnetocaloric materials.
    Gutfleisch O; Gottschall T; Fries M; Benke D; Radulov I; Skokov KP; Wende H; Gruner M; Acet M; Entel P; Farle M
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the Ge distribution on the first order magnetic transition of the MnFe(P,Ge) magnetocaloric material.
    Zhang ZL; Liu DM; Xiao WQ; Li H; Wang SB; Liang YT; Zhang HG; Li SL; Fu JJ; Yue M
    Phys Chem Chem Phys; 2018 Jul; 20(26):18117-18126. PubMed ID: 29938256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the transition width on the magnetocaloric effect across the magnetostructural transition of Heusler alloys.
    Cugini F; Porcari G; Fabbrici S; Albertini F; Solzi M
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Magnetocaloric Effect Driven by Interfacial Magnetic Coupling in Self-Assembled Mn3O4-La(0.7)Sr(0.3)MnO3 Nanocomposites.
    Vandrangi SK; Yang JC; Zhu YM; Chin YY; Lin HJ; Chen CT; Zhan Q; He Q; Chen YC; Chu YH
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26504-11. PubMed ID: 26574919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (Magneto)caloric refrigeration: is there light at the end of the tunnel?
    Pecharsky VK; Cui J; Johnson DD
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Approach for (Mn,Fe)
    He A; Svitlyk V; Mozharivskyj Y
    Inorg Chem; 2017 Mar; 56(5):2827-2833. PubMed ID: 28195712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A universal metric for ferroic energy materials.
    Brück E; Yibole H; Zhang L
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Phase Diagram of the Mn
    You X; Maschek M; van Dijk NHH; Brück E
    Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature and magnetic field induced multiple magnetic transitions in DyAg(2).
    Arora P; Chattopadhyay MK; Sharath Chandra LS; Sharma VK; Roy SB
    J Phys Condens Matter; 2011 Feb; 23(5):056002. PubMed ID: 21406918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disorder influenced magnetic phase transition in the Ce(Fe 0.9 Ru 0.1)2 alloy.
    Chattopadhyay MK; Roy SB
    J Phys Condens Matter; 2010 Jun; 22(23):236002. PubMed ID: 21393774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-order antiferro-ferromagnetic transition in Fe(49)(Rh(0.93)Pd(0.07))(51) under simultaneous application of magnetic field and external pressure.
    Kushwaha P; Bag P; Rawat R; Chaddah P
    J Phys Condens Matter; 2012 Mar; 24(9):096005. PubMed ID: 22323064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic and electric properties of CaMn7O12 based multiferroic compounds: effect of electron doping.
    Sannigrahi J; Chattopadhyay S; Dutta D; Giri S; Majumdar S
    J Phys Condens Matter; 2013 Jun; 25(24):246001. PubMed ID: 23709515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Si substitution in ferromagnetic Pr
    Dan S; Mukherjee S; Mazumdar C; Ranganathan R
    Phys Chem Chem Phys; 2019 Jan; 21(5):2628-2638. PubMed ID: 30657489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taming the first-order transition in giant magnetocaloric materials.
    Guillou F; Porcari G; Yibole H; van Dijk N; Brück E
    Adv Mater; 2014 May; 26(17):2671-5, 2615. PubMed ID: 24677518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large Anisotropic Magnetocaloric Effect, Wide Operating Temperature Range, and Large Refrigeration Capacity in Single-Crystal Mn
    Wang S; Fan C; Liu D
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33237-33243. PubMed ID: 34252274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of external pressure on the magnetocaloric effect of Ni-Mn-In alloy.
    Sharma VK; Chattopadhyay MK; Roy SB
    J Phys Condens Matter; 2011 Sep; 23(36):366001. PubMed ID: 21852731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glassy dynamics in magnetization across the first order ferromagnetic to antiferromagnetic transition in Fe0.955Ni0.045Rh.
    Manekar M; Chattopadhyay MK; Roy SB
    J Phys Condens Matter; 2011 Mar; 23(8):086001. PubMed ID: 21411904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of enhanced magnetocaloric properties with A-site deficiency in La
    Arun B; Akshay VR; Vasundhara M
    Dalton Trans; 2018 Nov; 47(43):15512-15522. PubMed ID: 30338325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Peltier cells differential calorimeter with kinetic correction for the measurement of cp(H,T) and Δs(H,T) of magnetocaloric materials.
    Basso V; Sasso CP; Küpferling M
    Rev Sci Instrum; 2010 Nov; 81(11):113904. PubMed ID: 21133483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.