These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27403044)

  • 1. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles.
    Cortés C; Unzueta L; de Los Reyes-Guzmán A; Ruiz OE; Flórez J
    Appl Bionics Biomech; 2016; 2016():5058171. PubMed ID: 27403044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation.
    Cortés C; de Los Reyes-Guzmán A; Scorza D; Bertelsen Á; Carrasco E; Gil-Agudo Á; Ruiz-Salguero O; Flórez J
    Biomed Res Int; 2016; 2016():2581924. PubMed ID: 27403420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upper limb posture estimation in robotic and virtual reality-based rehabilitation.
    Cortés C; Ardanza A; Molina-Rueda F; Cuesta-Gómez A; Unzueta L; Epelde G; Ruiz OE; De Mauro A; Florez J
    Biomed Res Int; 2014; 2014():821908. PubMed ID: 25110698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Estimation of Glenohumeral Joint Rotation Center With Cable-Driven Arm Exoskeleton (CAREX)-A Cable-Based Arm Exoskeleton.
    Mao Y; Jin X; Agrawal SK
    J Mech Robot; 2014 Feb; 6(1):0145021-145025. PubMed ID: 24895530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous estimation of human and exoskeleton motion: A simplified protocol.
    Alvarez MT; Torricelli D; Del-Ama AJ; Pinto D; Gonzalez-Vargas J; Moreno JC; Gil-Agudo A; Pons JL
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1431-1436. PubMed ID: 28814021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic Redundancy Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot.
    Wang C; Peng L; Hou ZG; Li J; Luo L; Chen S; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5251-5255. PubMed ID: 31947042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic Synergy of Multi-DoF Movement in Upper Limb and Its Application for Rehabilitation Exoskeleton Motion Planning.
    Tang S; Chen L; Barsotti M; Hu L; Li Y; Wu X; Bai L; Frisoli A; Hou W
    Front Neurorobot; 2019; 13():99. PubMed ID: 31849635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terrain Feature Estimation Method for a Lower Limb Exoskeleton Using Kinematic Analysis and Center of Pressure.
    Shim M; Han JI; Choi HS; Ha SM; Kim JH; Baek YS
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
    Schmitz A; Ye M; Shapiro R; Yang R; Noehren B
    J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Markerless motion tracking to quantify behavioral changes during robot-assisted gait training: A validation study.
    van Dellen F; Hesse N; Labruyère R
    Front Robot AI; 2023; 10():1155542. PubMed ID: 36950282
    [No Abstract]   [Full Text] [Related]  

  • 13. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.
    Riani A; Madani T; Hadri AE; Benallegue A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():695-701. PubMed ID: 28813901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
    Borbély BJ; Szolgay P
    Biomed Eng Online; 2017 Jan; 16(1):21. PubMed ID: 28095857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computer vision based method for 3D posture estimation of symmetrical lifting.
    Mehrizi R; Peng X; Xu X; Zhang S; Metaxas D; Li K
    J Biomech; 2018 Mar; 69():40-46. PubMed ID: 29398001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Musculoskeletal modeling and humanoid control of robots based on human gait data.
    Yu J; Zhang S; Wang A; Li W; Song L
    PeerJ Comput Sci; 2021; 7():e657. PubMed ID: 34458572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.
    Boser QA; Valevicius AM; Lavoie EB; Chapman CS; Pilarski PM; Hebert JS; Vette AH
    J Biomech; 2018 Apr; 72():228-234. PubMed ID: 29530500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.