BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27403606)

  • 21. Intelligent screening systems for cervical cancer.
    Jusman Y; Ng SC; Abu Osman NA
    ScientificWorldJournal; 2014; 2014():810368. PubMed ID: 24955419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Progress in Fourier transform infrared spectroscopic imaging applied to venereal cancer diagnosis.
    Wood BR; Kiupel M; McNaughton D
    Vet Pathol; 2014 Jan; 51(1):224-37. PubMed ID: 24009268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic screening of cervical cells using block image processing.
    Zhao M; Wu A; Song J; Sun X; Dong N
    Biomed Eng Online; 2016 Feb; 15():14. PubMed ID: 26847685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy.
    Zhu Y; Tan TL
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr; 159():68-77. PubMed ID: 26827180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo). By Neviliappan S, et al.
    Chiriboga L; Yee H; Diem M; Wood B
    Gynecol Oncol; 2003 Oct; 91(1):275-6; author reply 276-7. PubMed ID: 14529695
    [No Abstract]   [Full Text] [Related]  

  • 26. Segregation of ovarian cancer stage exploiting spectral biomarkers derived from blood plasma or serum analysis: ATR-FTIR spectroscopy coupled with variable selection methods.
    Lima KM; Gajjar KB; Martin-Hirsch PL; Martin FL
    Biotechnol Prog; 2015; 31(3):832-9. PubMed ID: 25832726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Imaging cervical cytology with scanning near-field optical microscopy (SNOM) coupled with an IR-FEL.
    Halliwell DE; Morais CL; Lima KM; Trevisan J; Siggel-King MR; Craig T; Ingham J; Martin DS; Heys KA; Kyrgiou M; Mitra A; Paraskevaidis E; Theophilou G; Martin-Hirsch PL; Cricenti A; Luce M; Weightman P; Martin FL
    Sci Rep; 2016 Jul; 6():29494. PubMed ID: 27406404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epileptic seizure classification of EEG time-series using rational discrete short-time fourier transform.
    Samiee K; Kovács P; Gabbouj M
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):541-52. PubMed ID: 25265603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Attenuated total reflection Fourier transform infrared and polarization spectroscopy of in vivo human skin ablated, layer by layer, by erbium:YAG laser.
    Sviridov AP; Zimnyakov DA; Sinichkin YP; Butvina LN; Omelchenko AJ; Shakh GS; Bagratashvili VN
    J Biomed Opt; 2004; 9(4):820-7. PubMed ID: 15250770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies.
    Wood BR; Quinn MA; Tait B; Ashdown M; Hislop T; Romeo M; McNaughton D
    Biospectroscopy; 1998; 4(2):75-91. PubMed ID: 9557903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Waveband selection of reagent-free determination for thalassemia screening indicators using Fourier transform infrared spectroscopy with attenuated total reflection.
    Long X; Liu G; Pan T; Chen J
    J Biomed Opt; 2014 Aug; 19(8):087004. PubMed ID: 25138209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy.
    Romeo MJ; Wood BR; Quinn MA; McNaughton D
    Biopolymers; 2003; 72(1):69-76. PubMed ID: 12400093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of contextual analysis for computer classification of cervical smears.
    Garcia GL; Kuklinski WS; Zahniser DJ; Oud PS; Vooys PG; Brenner JF
    Cytometry; 1987 Mar; 8(2):210-6. PubMed ID: 3556101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feature quantification and abnormal detection on cervical squamous epithelial cells.
    Zhao M; Chen L; Bian L; Zhang J; Yao C; Zhang J
    Comput Math Methods Med; 2015; 2015():941680. PubMed ID: 25873991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suitability of infrared microspectroscopic imaging for histopathology of the uterine cervix.
    Einenkel J; Braumann UD; Steller W; Binder H; Horn LC
    Histopathology; 2012 Jun; 60(7):1084-98. PubMed ID: 22372426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracting knowledge from chemical imaging data using computational algorithms for digital cancer diagnosis.
    Tiwari S; Bhargava R
    Yale J Biol Med; 2015 Jun; 88(2):131-43. PubMed ID: 26029012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diagnosis of colon cancer by attenuated total reflectance-Fourier transform infrared microspectroscopy and soft independent modeling of class analogy.
    Khanmohammadi M; Garmarudi AB; Ghasemi K; Jaliseh HK; Kaviani A
    Med Oncol; 2009; 26(3):292-7. PubMed ID: 18989795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Morphology and histogenesis of dysplasias of the cervix uteri].
    Iakovleva IA; Chernyĭ AP
    Arkh Patol; 1985; 47(11):32-7. PubMed ID: 4091694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced statistical techniques applied to comprehensive FTIR spectra on human colonic tissues.
    Zwielly A; Mordechai S; Sinielnikov I; Salman A; Bogomolny E; Argov S
    Med Phys; 2010 Mar; 37(3):1047-55. PubMed ID: 20384240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.