These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27403612)

  • 1. Assessment of the Accuracy of the Bethe-Salpeter (BSE/GW) Oscillator Strengths.
    Jacquemin D; Duchemin I; Blondel A; Blase X
    J Chem Theory Comput; 2016 Aug; 12(8):3969-81. PubMed ID: 27403612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe-Salpeter equation calculations of molecules.
    McKeon CA; Hamed SM; Bruneval F; Neaton JB
    J Chem Phys; 2022 Aug; 157(7):074103. PubMed ID: 35987597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmark of Bethe-Salpeter for Triplet Excited-States.
    Jacquemin D; Duchemin I; Blondel A; Blase X
    J Chem Theory Comput; 2017 Feb; 13(2):767-783. PubMed ID: 28107000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals.
    Liu C; Kloppenburg J; Yao Y; Ren X; Appel H; Kanai Y; Blum V
    J Chem Phys; 2020 Jan; 152(4):044105. PubMed ID: 32007075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules.
    Bruneval F; Hamed SM; Neaton JB
    J Chem Phys; 2015 Jun; 142(24):244101. PubMed ID: 26133404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking Correlated Methods for Frequency-Dependent Polarizabilities: Aromatic Molecules with the CC3, CCSD, CC2, SOPPA, SOPPA(CC2), and SOPPA(CCSD) Methods.
    Jørgensen MW; Faber R; Ligabue A; Sauer SPA
    J Chem Theory Comput; 2020 May; 16(5):3006-3018. PubMed ID: 32302474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reference Energies for Intramolecular Charge-Transfer Excitations.
    Loos PF; Comin M; Blase X; Jacquemin D
    J Chem Theory Comput; 2021 Jun; 17(6):3666-3686. PubMed ID: 33955742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excess and excited-state dipole moments of real-life dyes: a comparison between wave-function, BSE/
    Knysh I; Villalobos-Castro JDJ; Duchemin I; Blase X; Jacquemin D
    Phys Chem Chem Phys; 2023 Nov; 25(43):29993-30004. PubMed ID: 37905396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Koopmans Meets Bethe-Salpeter: Excitonic Optical Spectra without GW.
    Elliott JD; Colonna N; Marsili M; Marzari N; Umari P
    J Chem Theory Comput; 2019 Jun; 15(6):3710-3720. PubMed ID: 30998361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking the Bethe-Salpeter Formalism on a Standard Organic Molecular Set.
    Jacquemin D; Duchemin I; Blase X
    J Chem Theory Comput; 2015 Jul; 11(7):3290-304. PubMed ID: 26207104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pros and Cons of the Bethe-Salpeter Formalism for Ground-State Energies.
    Loos PF; Scemama A; Duchemin I; Jacquemin D; Blase X
    J Phys Chem Lett; 2020 May; 11(9):3536-3545. PubMed ID: 32298578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-Electron BSE@
    Yao Y; Golze D; Rinke P; Blum V; Kanai Y
    J Chem Theory Comput; 2022 Mar; 18(3):1569-1583. PubMed ID: 35138865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bethe-Salpeter study of cationic dyes: Comparisons with ADC(2) and TD-DFT.
    Azarias C; Duchemin I; Blase X; Jacquemin D
    J Chem Phys; 2017 Jan; 146(3):034301. PubMed ID: 28109224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The third-order algebraic diagrammatic construction method (ADC(3)) for the polarization propagator for closed-shell molecules: efficient implementation and benchmarking.
    Harbach PH; Wormit M; Dreuw A
    J Chem Phys; 2014 Aug; 141(6):064113. PubMed ID: 25134557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculations of n→π* Transition Energies: Comparisons Between TD-DFT, ADC, CC, CASPT2, and BSE/GW Descriptions.
    Azarias C; Habert C; Budzák Š; Blase X; Duchemin I; Jacquemin D
    J Phys Chem A; 2017 Aug; 121(32):6122-6134. PubMed ID: 28738157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking TD-DFT and Wave Function Methods for Oscillator Strengths and Excited-State Dipole Moments.
    Sarkar R; Boggio-Pasqua M; Loos PF; Jacquemin D
    J Chem Theory Comput; 2021 Feb; 17(2):1117-1132. PubMed ID: 33492950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-linear light-matter interactions from the Bethe-Salpeter equation.
    Rauwolf N; Klopper W; Holzer C
    J Chem Phys; 2024 Feb; 160(6):. PubMed ID: 38341783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helium Atom Excitations by the GW and Bethe-Salpeter Many-Body Formalism.
    Li J; Holzmann M; Duchemin I; Blase X; Olevano V
    Phys Rev Lett; 2017 Apr; 118(16):163001. PubMed ID: 28474954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides.
    Hung L; Bruneval F; Baishya K; Öğüt S
    J Chem Theory Comput; 2017 May; 13(5):2135-2146. PubMed ID: 28387124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Renormalized Singles
    Li J; Golze D; Yang W
    J Chem Theory Comput; 2022 Nov; 18(11):6637-6645. PubMed ID: 36279250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.