BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27403779)

  • 21. A bioimage informatics platform for high-throughput embryo phenotyping.
    Brown JM; Horner NR; Lawson TN; Fiegel T; Greenaway S; Morgan H; Ring N; Santos L; Sneddon D; Teboul L; Vibert J; Yaikhom G; Westerberg H; Mallon AM
    Brief Bioinform; 2018 Jan; 19(1):41-51. PubMed ID: 27742664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Live-Cell High Content Screening in Drug Development.
    Esner M; Meyenhofer F; Bickle M
    Methods Mol Biol; 2018; 1683():149-164. PubMed ID: 29082492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HCS-Neurons: identifying phenotypic changes in multi-neuron images upon drug treatments of high-content screening.
    Charoenkwan P; Hwang E; Cutler RW; Lee HC; Ko LW; Huang HL; Ho SY
    BMC Bioinformatics; 2013; 14 Suppl 16(Suppl 16):S12. PubMed ID: 24564437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HCS Methodology for Helping in Lab Scale Image-Based Assays.
    Soriano J; Mata G; Megias D
    Methods Mol Biol; 2019; 2040():331-356. PubMed ID: 31432486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment.
    Li X; Zhang X; Zhao S; Wang J; Liu G; Du Y
    Lab Chip; 2014 Feb; 14(3):471-81. PubMed ID: 24287736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Challenges and Opportunities in Enabling High-Throughput, Miniaturized High Content Screening.
    Nickischer D; Elkin L; Cloutier N; O'Connell J; Banks M; Weston A
    Methods Mol Biol; 2018; 1683():165-191. PubMed ID: 29082493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-scale image-based screening and profiling of cellular phenotypes.
    Bougen-Zhukov N; Loh SY; Lee HK; Loo LH
    Cytometry A; 2017 Feb; 91(2):115-125. PubMed ID: 27434125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL
    Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A high-throughput technique to map cell images to cell positions using a 3D imaging flow cytometer.
    Zhang Z; Tang R; Chen X; Waller L; Kau A; Fung AA; Gutierrez B; An C; Cho SH; Shi L; Lo YH
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35173045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative Analysis of Whole-Mount Fluorescence-Stained Tumor Spheroids in Phenotypic Drug Screens.
    Nuernberg E; Bruch R; Hafner M; Rudolf R; Vitacolonna M
    Methods Mol Biol; 2024; 2764():311-334. PubMed ID: 38393603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis.
    Booij TH; Price LS; Danen EHJ
    SLAS Discov; 2019 Jul; 24(6):615-627. PubMed ID: 30817892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The development of high-content screening (HCS) technology and its importance to drug discovery.
    Fraietta I; Gasparri F
    Expert Opin Drug Discov; 2016; 11(5):501-14. PubMed ID: 26971542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Concise review: a high-content screening approach to stem cell research and drug discovery.
    Xia X; Wong ST
    Stem Cells; 2012 Sep; 30(9):1800-7. PubMed ID: 22821636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assay Establishment and Validation of a High-Throughput Screening Platform for Three-Dimensional Patient-Derived Colon Cancer Organoid Cultures.
    Boehnke K; Iversen PW; Schumacher D; Lallena MJ; Haro R; Amat J; Haybaeck J; Liebs S; Lange M; Schäfer R; Regenbrecht CR; Reinhard C; Velasco JA
    J Biomol Screen; 2016 Oct; 21(9):931-41. PubMed ID: 27233291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development.
    Ekert JE; Johnson K; Strake B; Pardinas J; Jarantow S; Perkinson R; Colter DC
    PLoS One; 2014; 9(3):e92248. PubMed ID: 24638075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implementation and Use of State-of-the-Art, Cell-Based In Vitro Assays.
    Langer G
    Handb Exp Pharmacol; 2016; 232():171-90. PubMed ID: 26424721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PCaAnalyser: a 2D-image analysis based module for effective determination of prostate cancer progression in 3D culture.
    Hoque MT; Windus LC; Lovitt CJ; Avery VM
    PLoS One; 2013; 8(11):e79865. PubMed ID: 24278197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increasing the Content of High-Content Screening: An Overview.
    Singh S; Carpenter AE; Genovesio A
    J Biomol Screen; 2014 Jun; 19(5):640-50. PubMed ID: 24710339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The beautiful cell: high-content screening in drug discovery.
    Bickle M
    Anal Bioanal Chem; 2010 Sep; 398(1):219-26. PubMed ID: 20577725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.