These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 27403838)

  • 21. Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films.
    Abou-Ras D; Caballero R; Fischer CH; Kaufmann CA; Lauermann I; Mainz R; Mönig H; Schöpke A; Stephan C; Streeck C; Schorr S; Eicke A; Döbeli M; Gade B; Hinrichs J; Nunney T; Dijkstra H; Hoffmann V; Klemm D; Efimova V; Bergmaier A; Dollinger G; Wirth T; Unger W; Rockett AA; Perez-Rodriguez A; Alvarez-Garcia J; Izquierdo-Roca V; Schmid T; Choi PP; Müller M; Bertram F; Christen J; Khatri H; Collins RW; Marsillac S; Kötschau I
    Microsc Microanal; 2011 Oct; 17(5):728-51. PubMed ID: 21906418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scanning electron microanalysis and analytical challenges of mapping elements in urban atmospheric particles.
    Conny JM; Norris GA
    Environ Sci Technol; 2011 Sep; 45(17):7380-6. PubMed ID: 21774494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aberration-corrected STEM for atomic-resolution imaging and analysis.
    Krivanek OL; Lovejoy TC; Dellby N
    J Microsc; 2015 Sep; 259(3):165-72. PubMed ID: 25939916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective absorption correction for energy dispersive X-ray mapping in a scanning transmission electron microscope: analysing the local indium distribution in rough samples of InGaN alloy layers.
    Wang X; Chauvat MP; Ruterana P; Walther T
    J Microsc; 2017 Dec; 268(3):248-253. PubMed ID: 28960349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative X-ray Elemental Imaging in Plant Materials at the Subcellular Level with a Transmission Electron Microscope: Applications and Limitations.
    Chen S; Diekmann H; Janz D; Polle A
    Materials (Basel); 2014 Apr; 7(4):3160-3175. PubMed ID: 28788612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imaging Three-Dimensional Elemental Inhomogeneity in Pt-Ni Nanoparticles Using Spectroscopic Single Particle Reconstruction.
    Wang YC; Slater TJA; Leteba GM; Roseman AM; Race CP; Young NP; Kirkland AI; Lang CI; Haigh SJ
    Nano Lett; 2019 Feb; 19(2):732-738. PubMed ID: 30681878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional x-ray fluorescence mapping of a gold nanoparticle-loaded phantom.
    Ren L; Wu D; Li Y; Wang G; Wu X; Liu H
    Med Phys; 2014 Mar; 41(3):031902. PubMed ID: 24593720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elemental analysis of sunflower cataract in Wilson's disease: a study using scanning transmission electron microscopy and energy dispersive spectroscopy.
    Jang HJ; Kim JM; Choi CY
    Exp Eye Res; 2014 Apr; 121():58-65. PubMed ID: 24534570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance of high-resolution SEM/EDX systems equipped with transmission mode (TSEM) for imaging and measurement of size and size distribution of spherical nanoparticles.
    Hodoroaba VD; Motzkus C; Macé T; Vaslin-Reimann S
    Microsc Microanal; 2014 Apr; 20(2):602-12. PubMed ID: 24548518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards atomically resolved EELS elemental and fine structure mapping via multi-frame and energy-offset correction spectroscopy.
    Wang Y; Huang MRS; Salzberger U; Hahn K; Sigle W; van Aken PA
    Ultramicroscopy; 2018 Jan; 184(Pt B):98-105. PubMed ID: 29102829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies of x-ray localization and thickness dependence in atomic-scale elemental mapping by STEM energy-dispersive x-ray spectroscopy using single-frame scanning method.
    Lu P; Moya JM; Yuan R; Zuo JM
    Ultramicroscopy; 2018 Mar; 186():23-29. PubMed ID: 29247969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elemental imaging by EELS and EDXS in the analytical electron microscope : Its relevance to trace element research.
    Leapman RD; Fiori CE; Gorlen KE
    Biol Trace Elem Res; 1987 Aug; 13(1):89-102. PubMed ID: 24254668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Barriers to Quantitative Electron Probe X-Ray Microanalysis for Low Voltage Scanning Electron Microscopy.
    Newbury DE
    J Res Natl Inst Stand Technol; 2002; 107(6):605-19. PubMed ID: 27446755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative Energy-Dispersive X-Ray Analysis of Catalyst Nanoparticles Using a Partial Cross Section Approach.
    MacArthur KE; Slater TJ; Haigh SJ; Ozkaya D; Nellist PD; Lozano-Perez S
    Microsc Microanal; 2016 Feb; 22(1):71-81. PubMed ID: 26754480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Composition Analysis of III-Nitrides at the Nanometer Scale: Comparison of Energy Dispersive X-ray Spectroscopy and Atom Probe Tomography.
    Bonef B; Lopez-Haro M; Amichi L; Beeler M; Grenier A; Robin E; Jouneau PH; Mollard N; Mouton I; Monroy E; Bougerol C
    Nanoscale Res Lett; 2016 Dec; 11(1):461. PubMed ID: 27757941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.
    Chen Z; Taplin DJ; Weyland M; Allen LJ; Findlay SD
    Ultramicroscopy; 2017 May; 176():52-62. PubMed ID: 27823831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Configuration of microbially synthesized Pd-Au nanoparticles studied by STEM-based techniques.
    Tran DT; Jones IP; Preece JA; Johnston RL; Deplanche K; Macaskie LE
    Nanotechnology; 2012 Feb; 23(5):055701. PubMed ID: 22236722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observation of three-dimensional elemental distributions of a Si device using a 360 degrees -tilt FIB and the cold field-emission STEM system.
    Yaguchi T; Konno M; Kamino T; Watanabe M
    Ultramicroscopy; 2008 Nov; 108(12):1603-15. PubMed ID: 18715717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing Experimental Conditions for Accurate Quantitative Energy-Dispersive X-ray Analysis of Interfaces at the Atomic Scale.
    MacArthur KE; Yankovich AB; Béché A; Luysberg M; Brown HG; Findlay SD; Heggen M; Allen LJ
    Microsc Microanal; 2021 Apr; ():1-15. PubMed ID: 33843542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement Error in Atomic-Scale Scanning Transmission Electron Microscopy-Energy-Dispersive X-Ray Spectroscopy (STEM-EDS) Mapping of a Model Oxide Interface.
    Spurgeon SR; Du Y; Chambers SA
    Microsc Microanal; 2017 Jun; 23(3):513-517. PubMed ID: 28376951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.