BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27403999)

  • 1. Design of Core-Shell Heterostructure Nanofibers with Different Work Function and Their Sensing Properties to Trimethylamine.
    Li F; Gao X; Wang R; Zhang T; Lu G; Barsan N
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19799-806. PubMed ID: 27403999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOF-Derived Porous Hollow Co
    Yan W; Xu H; Ling M; Zhou S; Qiu T; Deng Y; Zhao Z; Zhang E
    ACS Sens; 2021 Jul; 6(7):2613-2621. PubMed ID: 34250792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties.
    Choi SW; Park JY; Kim SS
    Nanotechnology; 2009 Nov; 20(46):465603. PubMed ID: 19847030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tenofovir Containing Thiolated Chitosan Core/Shell Nanofibers: In Vitro and in Vivo Evaluations.
    Meng J; Agrahari V; Ezoulin MJ; Zhang C; Purohit SS; Molteni A; Dim D; Oyler NA; Youan BC
    Mol Pharm; 2016 Dec; 13(12):4129-4140. PubMed ID: 27700124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From a Relatively Hydrophobic and Triethylamine (TEA) Adsorption-Selective Core-Shell Heterostructure to a Humidity-Resistant and TEA Highly Selective Sensing Prototype: An Alternative Approach to Improve the Sensing Characteristics of TEA Sensors.
    Fu H; Shao H; Wang L; Jin H; Xia D; Deng S; Wang Y; Chen Y; Hua C; Liu L; Zang L
    ACS Sens; 2020 Feb; 5(2):571-579. PubMed ID: 32013398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zeolitic imidazolate framework-8 (ZIF-8)-coated In
    Liu Y; Wang R; Zhang T; Liu S; Fei T
    J Colloid Interface Sci; 2019 Apr; 541():249-257. PubMed ID: 30703713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Gas-Sensing Properties for Trimethylamine at Low Temperature Based on MoO
    Zhang F; Dong X; Cheng X; Xu Y; Zhang X; Huo L
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11755-11762. PubMed ID: 30848120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor.
    Lou Z; Li F; Deng J; Wang L; Zhang T
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12310-6. PubMed ID: 24102255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Sensitive and Selective Acetylene CuO/ZnO Heterostructure Sensors through Electrospinning at Lean O
    Jung MH; Kwak M; Ahn J; Song JY; Kang H; Jung HT
    ACS Sens; 2024 Jan; 9(1):217-227. PubMed ID: 38165082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coaxial metal-oxide-semiconductor (MOS) Au/Ga2O3/GaN nanowires.
    Hsieh CH; Chang MT; Chien YJ; Chou LJ; Chen LJ; Chen CD
    Nano Lett; 2008 Oct; 8(10):3288-92. PubMed ID: 18778107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-Regulated Electrochemical Reaction Assisted Core-Shell Heterostructure for Detecting Specific Volatile Markers with Controllable Sensitivity and Selectivity.
    Xu Y; Li H; Zhang X; Jin H; Jin Q; Shen W; Zou J; Deng S; Cheung W; Kam W; Zhang X; Jian J
    ACS Sens; 2019 Apr; 4(4):1081-1089. PubMed ID: 30912423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration.
    Zhang J; Qin Z; Zeng D; Xie C
    Phys Chem Chem Phys; 2017 Mar; 19(9):6313-6329. PubMed ID: 28198897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors.
    Park S; Kim S; Sun GJ; In Lee W; Kim KK; Lee C
    Nanoscale Res Lett; 2014; 9(1):638. PubMed ID: 25489289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Gas-Sensing Performance Based on MOS Nanomaterials: A Review.
    Xue S; Cao S; Huang Z; Yang D; Zhang G
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas Sensors Based on Semiconductor Metal Oxides Fabricated by Electrospinning: A Review.
    Chen H; Chen H; Chen J; Song M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of CO and NO
    Kim JH; Lee JH; Kim JY; Mirzaei A; Kim HW; Kim SS
    J Hazard Mater; 2019 Aug; 376():68-82. PubMed ID: 31125941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure-dependent formaldehyde gas sensing performance of the In
    Cao J; Zhang N; Wang S; Zhang H
    J Colloid Interface Sci; 2020 Oct; 577():19-28. PubMed ID: 32470701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-Shell Electrospun Polycrystalline ZnO Nanofibers for Ultra-Sensitive NO
    Aziz A; Tiwale N; Hodge SA; Attwood SJ; Divitini G; Welland ME
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43817-43823. PubMed ID: 30475575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of Toluene-Sensing Performance of SnO₂ Nanofibers by Pt Functionalization.
    Kim JH; Abideen ZU; Zheng Y; Kim SS
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets.
    Lee JH; Katoch A; Choi SW; Kim JH; Kim HW; Kim SS
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3101-9. PubMed ID: 25602688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.