BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27403999)

  • 21. Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol.
    Merkle VM; Zeng L; Slepian MJ; Wu X
    Biopolymers; 2014 Apr; 101(4):336-46. PubMed ID: 23913748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cable-Like Core-Shell Mesoporous SnO
    Xu D; Ge K; Chen Y; Qi S; Qiu J; Liu Q
    Chemistry; 2020 Jul; 26(42):9365-9370. PubMed ID: 32364617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and enhanced ethanol sensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods.
    Chen YJ; Zhu CL; Wang LJ; Gao P; Cao MS; Shi XL
    Nanotechnology; 2009 Jan; 20(4):045502. PubMed ID: 19417318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism and prominent enhancement of sensing ability to reducing gases in p/n core-shell nanofiber.
    Katoch A; Choi SW; Sun GJ; Kim HW; Kim SS
    Nanotechnology; 2014 May; 25(17):175501. PubMed ID: 24717769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NO2 Gas Sensing Properties of Multiple Networked ZnGa2O4 Nanorods Coated with TiO2.
    An S; Park S; Ko H; Jin C; Lee C
    J Nanosci Nanotechnol; 2015 Jan; 15(1):433-8. PubMed ID: 26328376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitive and Selective NH₃ Monitoring at Room Temperature Using ZnO Ceramic Nanofibers Decorated with Poly(styrene sulfonate).
    Andre RS; Kwak D; Dong Q; Zhong W; Correa DS; Mattoso LHC; Lei Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO₂ Core-Shell Nanorods on Flat Alumina Substrates.
    Ju DX; Xu HY; Qiu ZW; Zhang ZC; Xu Q; Zhang J; Wang JQ; Cao BQ
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19163-71. PubMed ID: 26280916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing the Hydrogen-Sensing Performance of p-Type PdO by Modulating the Conduction Model.
    Yang S; Li Q; Li C; Cao T; Wang T; Fan F; Zhang X; Fu Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52754-52764. PubMed ID: 34709782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterogeneous Sensitization of Metal-Organic Framework Driven Metal@Metal Oxide Complex Catalysts on an Oxide Nanofiber Scaffold Toward Superior Gas Sensors.
    Koo WT; Choi SJ; Kim SJ; Jang JS; Tuller HL; Kim ID
    J Am Chem Soc; 2016 Oct; 138(40):13431-13437. PubMed ID: 27643402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application.
    Lee JS; Kwon OS; Park SJ; Park EY; You SA; Yoon H; Jang J
    ACS Nano; 2011 Oct; 5(10):7992-8001. PubMed ID: 21905727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Recent Development in Chemoresistive-Based Heterostructure Gas Sensor Technology, Their Future Opportunities and Challenges: A Review.
    Alam MW; Pooja P; Aamir M; Souayeh B; Mushtaq S; Khan MS; Amin MN; Khan K; Shajahan S
    Membranes (Basel); 2022 May; 12(6):. PubMed ID: 35736262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: tunable morphology and efficient photocatalytic hydrogen production.
    Yang G; Yan W; Zhang Q; Shen S; Ding S
    Nanoscale; 2013 Dec; 5(24):12432-9. PubMed ID: 24166349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasensitive hydrogen sensor based on Pd(0)-loaded SnO2 electrospun nanofibers at room temperature.
    Wang Z; Li Z; Jiang T; Xu X; Wang C
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2013-21. PubMed ID: 23446459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of Heterojunctions of Core-Shell Heterostructures in Gas Sensing.
    Raza MH; Di Chio R; Movlaee K; Amsalem P; Koch N; Barsan N; Neri G; Pinna N
    ACS Appl Mater Interfaces; 2022 May; 14(19):22041-22052. PubMed ID: 35522904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel optical dual sensor based on a coaxial electrospinning method for simultaneous sensing of oxygen and ammonia.
    Putro DT; Chu CS
    Heliyon; 2024 Feb; 10(4):e25983. PubMed ID: 38390081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biocompatible core-shell electrospun nanofibers as potential application for chemotherapy against ovary cancer.
    Yan E; Fan Y; Sun Z; Gao J; Hao X; Pei S; Wang C; Sun L; Zhang D
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():217-23. PubMed ID: 24907754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and gas sensing properties of α-Fe(2)O(3)@ZnO core-shell nanospindles.
    Zhang J; Liu X; Wang L; Yang T; Guo X; Wu S; Wang S; Zhang S
    Nanotechnology; 2011 May; 22(18):185501. PubMed ID: 21415474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning.
    Chen H; Wang N; Di J; Zhao Y; Song Y; Jiang L
    Langmuir; 2010 Jul; 26(13):11291-6. PubMed ID: 20337483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers.
    Vysloužilová L; Buzgo M; Pokorný P; Chvojka J; Míčková A; Rampichová M; Kula J; Pejchar K; Bílek M; Lukáš D; Amler E
    Int J Pharm; 2017 Jan; 516(1-2):293-300. PubMed ID: 27851978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ZnO@MnO
    Radhamani AV; Shareef KM; Rao MS
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30531-30542. PubMed ID: 27726336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.