BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27404093)

  • 1. Subsurface thermal behaviour of tissue mimics embedded with large blood vessels during plasmonic photo-thermal therapy.
    Paul A; Narasimhan A; Das SK; Sengupta S; Pradeep T
    Int J Hyperthermia; 2016 Nov; 32(7):765-77. PubMed ID: 27404093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating.
    Paul A; Narasimhan A; Kahlen FJ; Das SK
    J Therm Biol; 2014 Apr; 41():77-87. PubMed ID: 24679976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational study of photo-thermal ablation of large blood vessel embedded tumor using localized injection of gold nanoshells.
    Paul A; Paul A
    J Therm Biol; 2018 Dec; 78():329-342. PubMed ID: 30509655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Fourier thermal transport induced structural hierarchy and damage to collagen ultrastructure subjected to laser irradiation.
    Sahoo N; Narasimhan A; Dhar P; Das SK
    Int J Hyperthermia; 2018 May; 34(3):229-242. PubMed ID: 28610455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells.
    Phadnis A; Kumar S; Srivastava A
    J Therm Biol; 2016 Oct; 61():16-28. PubMed ID: 27712656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical prediction of sub-surface thermal history in translucent tissue phantoms during plasmonic photo-thermotherapy (PPTT).
    Dhar P; Paul A; Narasimhan A; Das SK
    J Therm Biol; 2016 Dec; 62(Pt B):143-149. PubMed ID: 27888928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of a multisource model for gold nanoparticle-mediated plasmonic heating with near-infrared laser by the finite element method.
    Reynoso FJ; Lee CD; Cheong SK; Cho SH
    Med Phys; 2013 Jul; 40(7):073301. PubMed ID: 23822455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous subsurface thermal behavior in tissue mimics upon near infrared irradiation mediated photothermal therapy.
    Ghosh S; Sahoo N; Sajanlal PR; Sarangi NK; Ramesh N; Panda T; Pradeep T; Das SK
    J Biomed Nanotechnol; 2014 Mar; 10(3):405-14. PubMed ID: 24730236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy.
    Cheong SK; Krishnan S; Cho SH
    Med Phys; 2009 Oct; 36(10):4664-71. PubMed ID: 19928098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy.
    Terentyuk GS; Maslyakova GN; Suleymanova LV; Khlebtsov NG; Khlebtsov BN; Akchurin GG; Maksimova IL; Tuchin VV
    J Biomed Opt; 2009; 14(2):021016. PubMed ID: 19405729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal temperature control of tissue embedded with gold nanoparticles for enhanced thermal therapy based on two-energy equation model.
    Wang SL; Qi H; Ren YT; Chen Q; Ruan LM
    J Therm Biol; 2018 May; 74():264-274. PubMed ID: 29801637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.
    Ganguly M; Miller S; Mitra K
    Lasers Surg Med; 2015 Nov; 47(9):711-22. PubMed ID: 26349633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanostructures absorption capacities of various energy forms for thermal therapy applications.
    Amini SM
    J Therm Biol; 2019 Jan; 79():81-84. PubMed ID: 30612690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of thermal distribution for pulsed laser radiation in cancer treatment with nanoparticle-mediated hyperthermia.
    Sazgarnia A; Naghavi N; Mehdizadeh H; Shahamat Z
    J Therm Biol; 2015 Jan; 47():32-41. PubMed ID: 25526652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of thermal damage for plasmonic photothermal therapy of subsurface tumors.
    Shaw AK; Khurana D; Soni S
    Phys Eng Sci Med; 2024 May; ():. PubMed ID: 38753284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective thermal penetration depth in photo-irradiated ex vivo human tissues.
    Stolik S; Delgado JA; Anasagasti L; PĂ©rez AM
    Photomed Laser Surg; 2011 Oct; 29(10):669-75. PubMed ID: 21612514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat transfer analysis of skin during thermal therapy using thermal wave equation.
    Kashcooli M; Salimpour MR; Shirani E
    J Therm Biol; 2017 Feb; 64():7-18. PubMed ID: 28166948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound imaging to monitor photothermal therapy - feasibility study.
    Shah J; Aglyamov SR; Sokolov K; Milner TE; Emelianov SY
    Opt Express; 2008 Mar; 16(6):3776-85. PubMed ID: 18542473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrast ultrasound-guided photothermal therapy using gold nanoshelled microcapsules in breast cancer.
    Wang S; Dai Z; Ke H; Qu E; Qi X; Zhang K; Wang J
    Eur J Radiol; 2014 Jan; 83(1):117-22. PubMed ID: 24268740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks.
    Kok HP; van den Berg CA; Bel A; Crezee J
    Med Phys; 2013 Oct; 40(10):103303. PubMed ID: 24089933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.