These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27404110)

  • 1. Patterns of Cereal Yield Growth across China from 1980 to 2010 and Their Implications for Food Production and Food Security.
    Li X; Liu N; You L; Ke X; Liu H; Huang M; Waddington SR
    PLoS One; 2016; 11(7):e0159061. PubMed ID: 27404110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is yield increase sufficient to achieve food security in China?
    Wei X; Zhang Z; Shi P; Wang P; Chen Y; Song X; Tao F
    PLoS One; 2015; 10(2):e0116430. PubMed ID: 25680193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced tillage and crop diversification can improve productivity and profitability of rice-based rotations of the Eastern Gangetic Plains.
    Hoque MA; Gathala MK; Timsina J; Ziauddin MATM; Hossain M; Krupnik TJ
    Field Crops Res; 2023 Feb; 291():108791. PubMed ID: 36742349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980.
    Fan M; Lal R; Cao J; Qiao L; Su Y; Jiang R; Zhang F
    PLoS One; 2013; 8(9):e74617. PubMed ID: 24058605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-Temporal Dynamics of Maize Potential Yield and Yield Gaps in Northeast China from 1990 to 2015.
    Pu L; Zhang S; Yang J; Chang L; Bai S
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30987325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A global meta-analysis of yield-scaled N
    Yao Z; Guo H; Wang Y; Zhan Y; Zhang T; Wang R; Zheng X; Butterbach-Bahl K
    Glob Chang Biol; 2024 Feb; 30(2):e17177. PubMed ID: 38348630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent patterns of crop yield growth and stagnation.
    Ray DK; Ramankutty N; Mueller ND; West PC; Foley JA
    Nat Commun; 2012; 3():1293. PubMed ID: 23250423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does climate change affect potential yields of four staple grain crops worldwide by 2030?
    Cai C; Lv L; Wei S; Zhang L; Cao W
    PLoS One; 2024; 19(5):e0303857. PubMed ID: 38820516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of climate in the trend and variability of Ethiopia's cereal crop yields.
    Yang M; Wang G; Ahmed KF; Adugna B; Eggen M; Atsbeha E; You L; Koo J; Anagnostou E
    Sci Total Environ; 2020 Jun; 723():137893. PubMed ID: 32220729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the boom in staple crop production attributed to expanded cropland or improved yield? A comparative analysis between China and India.
    Zhai J; Pu L; Lu Y; Huang S
    Sci Total Environ; 2024 Jul; 933():173151. PubMed ID: 38735335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Temporal and Spatial Distribution, Utilization Status, and Carbon Emission Reduction Potential of Straw Resources in China].
    Yang CW; Xing F; Zhu JC; Li RH; Zhang ZQ
    Huan Jing Ke Xue; 2023 Feb; 44(2):1149-1162. PubMed ID: 36775637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.
    Wang YB; Wu PT; Engel BA; Sun SK
    Sci Total Environ; 2014 Nov; 497-498():1-9. PubMed ID: 25112819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable diversification options delivers sustainable and nutritious food in Indo-Gangetic plains.
    Gora MK; Kumar S; Jat HS; Kakraliya SK; Choudhary M; Dhaka AK; Jat RD; Kakraliya M; Sharma PC; Jat ML
    Sci Rep; 2022 Aug; 12(1):14371. PubMed ID: 35999342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yield gap analysis of major food crops in Pakistan: prospects for food security.
    Khan I; Lei H; Khan A; Muhammad I; Javeed T; Khan A; Huo X
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):7994-8011. PubMed ID: 33044697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].
    Wang XY; Yang XG; Sun S; Xie WJ
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3091-102. PubMed ID: 26995918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Producing more grain with lower environmental costs.
    Chen X; Cui Z; Fan M; Vitousek P; Zhao M; Ma W; Wang Z; Zhang W; Yan X; Yang J; Deng X; Gao Q; Zhang Q; Guo S; Ren J; Li S; Ye Y; Wang Z; Huang J; Tang Q; Sun Y; Peng X; Zhang J; He M; Zhu Y; Xue J; Wang G; Wu L; An N; Wu L; Ma L; Zhang W; Zhang F
    Nature; 2014 Oct; 514(7523):486-9. PubMed ID: 25186728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential.
    Krupnik TJ; Schulthess U; Ahmed ZU; McDonald AJ
    Land use policy; 2017 Jan; 60():206-222. PubMed ID: 28050058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projective analysis of staple food crop productivity in adaptation to future climate change in China.
    Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G
    Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First adaptation of quinoa in the Bhutanese mountain agriculture systems.
    Katwal TB; Bazile D
    PLoS One; 2020; 15(1):e0219804. PubMed ID: 31945062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintaining higher grain production with less reactive nitrogen losses in China: A meta-analysis study.
    Abdo AI; Deng Y; Sun D; Chen X; Alnaimy MA; El-Sobky EEA; Wei H; Zhang J
    J Environ Manage; 2022 Nov; 322():116018. PubMed ID: 36067673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.