BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27405093)

  • 1. Identification of New Resistance Mechanisms in Escherichia coli against Apidaecin 1b Using Quantitative Gel- and LC-MS-Based Proteomics.
    Schmidt R; Krizsan A; Volke D; Knappe D; Hoffmann R
    J Proteome Res; 2016 Aug; 15(8):2607-17. PubMed ID: 27405093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the yjiL-mdtM Gene Cluster on the Antibacterial Activity of Proline-Rich Antimicrobial Peptides Overcoming Escherichia coli Resistance Induced by the Missing SbmA Transporter System.
    Krizsan A; Knappe D; Hoffmann R
    Antimicrob Agents Chemother; 2015 Oct; 59(10):5992-8. PubMed ID: 26169420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Api88 Binding Partners in Escherichia coli Using a Photoaffinity-Cross-Link Strategy and Label-Free Quantification.
    Volke D; Krizsan A; Berthold N; Knappe D; Hoffmann R
    J Proteome Res; 2015 Aug; 14(8):3274-83. PubMed ID: 26196380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipid composition of the outer membrane of Escherichia coli influences its susceptibility against antimicrobial peptide apidaecin 1b.
    Schmidt R; Yonghong D; Hoffmann R
    Diagn Microbiol Infect Dis; 2018 Apr; 90(4):316-323. PubMed ID: 29329756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular uptake of apidaecin 1b and related analogs in Gram-negative bacteria reveals novel antibacterial mechanism for proline-rich antimicrobial peptides.
    Berthold N; Hoffmann R
    Protein Pept Lett; 2014 Apr; 21(4):391-8. PubMed ID: 24164266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlating uptake and activity of proline-rich antimicrobial peptides in Escherichia coli.
    Holfeld L; Hoffmann R; Knappe D
    Anal Bioanal Chem; 2017 Sep; 409(23):5581-5592. PubMed ID: 28717895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel apidaecin 1b analogs with superior serum stabilities for treatment of infections by gram-negative pathogens.
    Berthold N; Czihal P; Fritsche S; Sauer U; Schiffer G; Knappe D; Alber G; Hoffmann R
    Antimicrob Agents Chemother; 2013 Jan; 57(1):402-9. PubMed ID: 23114765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomal binding and antibacterial activity of ethylene glycol-bridged apidaecin Api137 and oncocin Onc112 conjugates.
    Goldbach T; Knappe D; Reinsdorf C; Berg T; Hoffmann R
    J Pept Sci; 2016 Sep; 22(9):592-9. PubMed ID: 27406684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and elucidation of proline-rich antimicrobial peptides with enhanced potency and delivery.
    Lai PK; Tresnak DT; Hackel BJ
    Biotechnol Bioeng; 2019 Oct; 116(10):2439-2450. PubMed ID: 31209863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteome analysis of an antibiotic resistant Escherichia coli exposed to tetracycline reveals multiple affected metabolic and peptidoglycan processes.
    Jones-Dias D; Carvalho AS; Moura IB; Manageiro V; Igrejas G; Caniça M; Matthiesen R
    J Proteomics; 2017 Mar; 156():20-28. PubMed ID: 28043878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iTRAQ-coupled 2-D LC-MS/MS analysis of cytoplasmic protein profile in Escherichia coli incubated with apidaecin IB.
    Zhou Y; Chen WN
    J Proteomics; 2011 Dec; 75(2):511-6. PubMed ID: 21889622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of antimicrobial peptides from Apis mellifera hemolymph and its optimized version Api88 on biological activities of human monocytes and mast cells.
    Keitel U; Schilling E; Knappe D; Al-Mekhlafi M; Petersen F; Hoffmann R; Hauschildt S
    Innate Immun; 2013; 19(4):355-67. PubMed ID: 23112010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iTRAQ-coupled 2-D LC-MS/MS analysis of membrane protein profile in Escherichia coli incubated with apidaecin IB.
    Zhou Y; Chen WN
    PLoS One; 2011; 6(6):e20442. PubMed ID: 21673808
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Schmidt R; Knappe D; Wende E; Ostorházi E; Hoffmann R
    Front Chem; 2017; 5():15. PubMed ID: 28373972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nisin-controlled extracellular production of apidaecin in Lactococcus lactis.
    Zhou XX; Wang YB; Pan YJ; Li WF
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):947-53. PubMed ID: 18286279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proteomics to evaluate multi drug resistance in Escherichia coli.
    Piras C; Soggiu A; Bonizzi L; Gaviraghi A; Deriu F; De Martino L; Iovane G; Amoresano A; Roncada P
    Mol Biosyst; 2012 Apr; 8(4):1060-7. PubMed ID: 22120138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating specific bacterial resistance to AMPs by using a magainin I-resistant Escherichia coli model.
    de Almeida KC; Lima TB; Motta DO; Silva ON; Magalhães BS; Dias SC; Franco OL
    J Antibiot (Tokyo); 2014 Oct; 67(10):681-7. PubMed ID: 24802209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sensitive quantification of the peptide apidaecin 1 isoforms in single bee tissues using a weak cation exchange pre-separation and nanocapillary liquid chromatography coupled with mass spectrometry.
    Danihlík J; Šebela M; Petřivalský M; Lenobel R
    J Chromatogr A; 2014 Dec; 1374():134-144. PubMed ID: 25435459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo target exploration of apidaecin based on Acquired Resistance induced by Gene Overexpression (ARGO assay).
    Matsumoto K; Yamazaki K; Kawakami S; Miyoshi D; Ooi T; Hashimoto S; Taguchi S
    Sci Rep; 2017 Sep; 7(1):12136. PubMed ID: 28939819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-activity relationship study using peptide arrays to optimize Api137 for an increased antimicrobial activity against Pseudomonas aeruginosa.
    Bluhm ME; Knappe D; Hoffmann R
    Eur J Med Chem; 2015 Oct; 103():574-82. PubMed ID: 26408816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.