These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 27405382)
1. Developmental plasticity evolved according to specialist-generalist trade-offs in experimental populations of Drosophila melanogaster. Le Vinh Thuy J; VandenBrooks JM; Angilletta MJ Biol Lett; 2016 Jul; 12(7):. PubMed ID: 27405382 [TBL] [Abstract][Full Text] [Related]
2. Temporal variation favors the evolution of generalists in experimental populations of Drosophila melanogaster. Condon C; Cooper BS; Yeaman S; Angilletta MJ Evolution; 2014 Mar; 68(3):720-8. PubMed ID: 24152128 [TBL] [Abstract][Full Text] [Related]
3. Evolution and development of Drosophila melanogaster under different thermal conditions affected cell sizes and sensitivity to paralyzing hypoxia. Szabla N; Maria Labecka A; Antoł A; Sobczyk Ł; Angilletta MJ; Czarnoleski M J Insect Physiol; 2024 Sep; 157():104671. PubMed ID: 38972633 [TBL] [Abstract][Full Text] [Related]
4. In a variable thermal environment selection favors greater plasticity of cell membranes in Drosophila melanogaster. Cooper BS; Hammad LA; Fisher NP; Karty JA; Montooth KL Evolution; 2012 Jun; 66(6):1976-84. PubMed ID: 22671561 [TBL] [Abstract][Full Text] [Related]
5. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology. Frazier MR; Harrison JF; Kirkton SD; Roberts SP J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301 [TBL] [Abstract][Full Text] [Related]
6. Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature associated plastic recombination. Kohl KP; Singh ND Evolution; 2018 Apr; 72(4):989-999. PubMed ID: 29468654 [TBL] [Abstract][Full Text] [Related]
7. Colder environments did not select for a faster metabolism during experimental evolution of Drosophila melanogaster. Alton LA; Condon C; White CR; Angilletta MJ Evolution; 2017 Jan; 71(1):145-152. PubMed ID: 27757954 [TBL] [Abstract][Full Text] [Related]
8. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments. Manenti T; Loeschcke V; Moghadam NN; Sørensen JG J Evol Biol; 2015 Nov; 28(11):2078-87. PubMed ID: 26299271 [TBL] [Abstract][Full Text] [Related]
9. Evolution of Drosophila resistance against different pathogens and infection routes entails no detectable maintenance costs. Faria VG; Martins NE; Paulo T; Teixeira L; Sucena É; Magalhães S Evolution; 2015 Nov; 69(11):2799-809. PubMed ID: 26496003 [TBL] [Abstract][Full Text] [Related]
11. Flies evolved small bodies and cells at high or fluctuating temperatures. Adrian GJ; Czarnoleski M; Angilletta MJ Ecol Evol; 2016 Nov; 6(22):7991-7996. PubMed ID: 27878071 [TBL] [Abstract][Full Text] [Related]
12. Parallel trait adaptation across opposing thermal environments in experimental Drosophila melanogaster populations. Tobler R; Hermisson J; Schlötterer C Evolution; 2015 Jul; 69(7):1745-59. PubMed ID: 26080903 [TBL] [Abstract][Full Text] [Related]
14. Variation in thermal performance and reaction norms among populations of Drosophila melanogaster. Klepsatel P; Gáliková M; De Maio N; Huber CD; Schlötterer C; Flatt T Evolution; 2013 Dec; 67(12):3573-87. PubMed ID: 24299409 [TBL] [Abstract][Full Text] [Related]
15. Constant, cycling, hot and cold thermal environments: strong effects on mean viability but not on genetic estimates. Ketola T; Kellermann V; Kristensen TN; Loeschcke V J Evol Biol; 2012 Jun; 25(6):1209-15. PubMed ID: 22515705 [TBL] [Abstract][Full Text] [Related]
16. Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in Drosophila melanogaster. Kellermann V; Hoffmann AA; Kristensen TN; Moghadam NN; Loeschcke V Am Nat; 2015 Nov; 186(5):582-93. PubMed ID: 26655772 [TBL] [Abstract][Full Text] [Related]