These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27405382)

  • 1. Developmental plasticity evolved according to specialist-generalist trade-offs in experimental populations of Drosophila melanogaster.
    Le Vinh Thuy J; VandenBrooks JM; Angilletta MJ
    Biol Lett; 2016 Jul; 12(7):. PubMed ID: 27405382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal variation favors the evolution of generalists in experimental populations of Drosophila melanogaster.
    Condon C; Cooper BS; Yeaman S; Angilletta MJ
    Evolution; 2014 Mar; 68(3):720-8. PubMed ID: 24152128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution and development of Drosophila melanogaster under different thermal conditions affected cell sizes and sensitivity to paralyzing hypoxia.
    Szabla N; Maria Labecka A; Antoł A; Sobczyk Ł; Angilletta MJ; Czarnoleski M
    J Insect Physiol; 2024 Sep; 157():104671. PubMed ID: 38972633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In a variable thermal environment selection favors greater plasticity of cell membranes in Drosophila melanogaster.
    Cooper BS; Hammad LA; Fisher NP; Karty JA; Montooth KL
    Evolution; 2012 Jun; 66(6):1976-84. PubMed ID: 22671561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature associated plastic recombination.
    Kohl KP; Singh ND
    Evolution; 2018 Apr; 72(4):989-999. PubMed ID: 29468654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colder environments did not select for a faster metabolism during experimental evolution of Drosophila melanogaster.
    Alton LA; Condon C; White CR; Angilletta MJ
    Evolution; 2017 Jan; 71(1):145-152. PubMed ID: 27757954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments.
    Manenti T; Loeschcke V; Moghadam NN; Sørensen JG
    J Evol Biol; 2015 Nov; 28(11):2078-87. PubMed ID: 26299271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of Drosophila resistance against different pathogens and infection routes entails no detectable maintenance costs.
    Faria VG; Martins NE; Paulo T; Teixeira L; Sucena É; Magalhães S
    Evolution; 2015 Nov; 69(11):2799-809. PubMed ID: 26496003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic plasticity of
    Fraimout A; Jacquemart P; Villarroel B; Aponte DJ; Decamps T; Herrel A; Cornette R; Debat V
    J Exp Biol; 2018 Jul; 221(Pt 13):. PubMed ID: 29987053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flies evolved small bodies and cells at high or fluctuating temperatures.
    Adrian GJ; Czarnoleski M; Angilletta MJ
    Ecol Evol; 2016 Nov; 6(22):7991-7996. PubMed ID: 27878071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel trait adaptation across opposing thermal environments in experimental Drosophila melanogaster populations.
    Tobler R; Hermisson J; Schlötterer C
    Evolution; 2015 Jul; 69(7):1745-59. PubMed ID: 26080903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evolution for generalists and specialists reveals multivariate genetic constraints on thermal reaction norms.
    Berger D; Walters RJ; Blanckenhorn WU
    J Evol Biol; 2014 Sep; 27(9):1975-89. PubMed ID: 25039963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in thermal performance and reaction norms among populations of Drosophila melanogaster.
    Klepsatel P; Gáliková M; De Maio N; Huber CD; Schlötterer C; Flatt T
    Evolution; 2013 Dec; 67(12):3573-87. PubMed ID: 24299409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constant, cycling, hot and cold thermal environments: strong effects on mean viability but not on genetic estimates.
    Ketola T; Kellermann V; Kristensen TN; Loeschcke V
    J Evol Biol; 2012 Jun; 25(6):1209-15. PubMed ID: 22515705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in Drosophila melanogaster.
    Kellermann V; Hoffmann AA; Kristensen TN; Moghadam NN; Loeschcke V
    Am Nat; 2015 Nov; 186(5):582-93. PubMed ID: 26655772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel gene expression evolution in natural and laboratory evolved populations.
    Hsu SK; Belmouaden C; Nolte V; Schlötterer C
    Mol Ecol; 2021 Feb; 30(4):884-894. PubMed ID: 32979867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental stability opf Drosophila melanogaster under artificial and natural selection in constant and fluctuating environments.
    Bradley BP
    Genetics; 1980 Aug; 95(4):1033-42. PubMed ID: 6781983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal acclimation of flies from three populations of Drosophila melanogaster fails to support the seasonality hypothesis.
    Angilletta MJ; Condon C; Youngblood JP
    J Therm Biol; 2019 Apr; 81():25-32. PubMed ID: 30975420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures.
    Gilchrist GW; Huey RB; Partridge L
    Physiol Zool; 1997; 70(4):403-14. PubMed ID: 9237300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.