These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
522 related articles for article (PubMed ID: 27405438)
1. Biotransformation of chemical constituents of durian wine with simultaneous alcoholic fermentation by Torulaspora delbrueckii and malolactic fermentation by Oenococcus oeni. Lu Y; Chua JY; Huang D; Lee PR; Liu SQ Appl Microbiol Biotechnol; 2016 Oct; 100(20):8877-88. PubMed ID: 27405438 [TBL] [Abstract][Full Text] [Related]
2. Chemical consequences of three commercial strains of Oenococcus oeni co-inoculated with Torulaspora delbrueckii in durian wine fermentation. Lu Y; Chua JY; Huang D; Lee PR; Liu SQ Food Chem; 2017 Jan; 215():209-18. PubMed ID: 27542469 [TBL] [Abstract][Full Text] [Related]
3. Induction of simultaneous and sequential malolactic fermentation in durian wine. Taniasuri F; Lee PR; Liu SQ Int J Food Microbiol; 2016 Aug; 230():1-9. PubMed ID: 27104664 [TBL] [Abstract][Full Text] [Related]
4. Transformation of chemical constituents of lychee wine by simultaneous alcoholic and malolactic fermentations. Chen D; Liu SQ Food Chem; 2016 Apr; 196():988-95. PubMed ID: 26593581 [TBL] [Abstract][Full Text] [Related]
5. Effect of Saccharomyces cerevisiae, Torulaspora delbrueckii and malolactic fermentation on fermentation kinetics and sensory property of black raspberry wines. Liu W; Li H; Jiang D; Zhang Y; Zhang S; Sun S Food Microbiol; 2020 Oct; 91():103551. PubMed ID: 32539970 [TBL] [Abstract][Full Text] [Related]
6. Screening of Saccharomyces cerevisiae and Torulaspora delbrueckii strains in relation to their effect on malolactic fermentation. Ruiz-de-Villa C; Poblet M; Cordero-Otero R; Bordons A; Reguant C; Rozès N Food Microbiol; 2023 Jun; 112():104212. PubMed ID: 36906299 [TBL] [Abstract][Full Text] [Related]
7. Impact of changes in wine composition produced by non-Saccharomyces on malolactic fermentation. Balmaseda A; Rozès N; Leal MÁ; Bordons A; Reguant C Int J Food Microbiol; 2021 Jan; 337():108954. PubMed ID: 33202298 [TBL] [Abstract][Full Text] [Related]
8. The effects of co- and sequential inoculation of Torulaspora delbrueckii and Pichia kluyveri on chemical compositions of durian wine. Lu Y; Voon MKW; Chua JY; Huang D; Lee PR; Liu SQ Appl Microbiol Biotechnol; 2017 Nov; 101(21):7853-7863. PubMed ID: 28942463 [TBL] [Abstract][Full Text] [Related]
9. Simulated lees of different yeast species modify the performance of malolactic fermentation by Oenococcus oeni in wine-like medium. Balmaseda A; Rozès N; Bordons A; Reguant C Food Microbiol; 2021 Oct; 99():103839. PubMed ID: 34119090 [TBL] [Abstract][Full Text] [Related]
10. A Metagenomic-Based Approach for the Characterization of Bacterial Diversity Associated with Spontaneous Malolactic Fermentations in Wine. Berbegal C; Borruso L; Fragasso M; Tufariello M; Russo P; Brusetti L; Spano G; Capozzi V Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31443334 [TBL] [Abstract][Full Text] [Related]
11. Impact of different malolactic fermentation inoculation scenarios on Riesling wine aroma. Knoll C; Fritsch S; Schnell S; Grossmann M; Krieger-Weber S; du Toit M; Rauhut D World J Microbiol Biotechnol; 2012 Mar; 28(3):1143-53. PubMed ID: 22805835 [TBL] [Abstract][Full Text] [Related]
12. Evaluating the effect of using non-Saccharomyces on Oenococcus oeni and wine malolactic fermentation. Ferrando N; Araque I; Ortís A; Thornes G; Bautista-Gallego J; Bordons A; Reguant C Food Res Int; 2020 Dec; 138(Pt B):109779. PubMed ID: 33288165 [TBL] [Abstract][Full Text] [Related]
13. Influence of glycosides on behavior of Oenococcus oeni in wine conditions: growth, substrates and aroma compounds. Maturano C; Saguir FM World J Microbiol Biotechnol; 2017 Aug; 33(8):151. PubMed ID: 28674927 [TBL] [Abstract][Full Text] [Related]
14. Effects of inoculation timing and mixed fermentation with Pichia fermentans on Oenococcus oeni viability, fermentation duration and aroma production during wine malolactic fermentation. Zhao H; Li Y; Liu L; Zheng M; Feng Z; Hu K; Tao Y Food Res Int; 2022 Sep; 159():111604. PubMed ID: 35940798 [TBL] [Abstract][Full Text] [Related]
15. Assessment of volatile and non-volatile compounds in durian wines fermented with four commercial non-Saccharomyces yeasts. Lu Y; Huang D; Lee PR; Liu SQ J Sci Food Agric; 2016 Mar; 96(5):1511-21. PubMed ID: 25966435 [TBL] [Abstract][Full Text] [Related]
16. Influence of the dominance of must fermentation by Torulaspora delbrueckii on the malolactic fermentation and organoleptic quality of red table wine. Ramírez M; Velázquez R; Maqueda M; Zamora E; López-Piñeiro A; Hernández LM Int J Food Microbiol; 2016 Dec; 238():311-319. PubMed ID: 27718475 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of inoculation strategies of Torulaspora delbrueckii and Saccharomyces cerevisiae on the performance of alcoholic and malolactic fermentations in an optimized synthetic grape must. Ruiz-de-Villa C; Poblet M; Bordons A; Reguant C; Rozès N Int J Food Microbiol; 2023 Nov; 404():110367. PubMed ID: 37597274 [TBL] [Abstract][Full Text] [Related]
18. Metabolomics reveals alterations in both primary and secondary metabolites by wine bacteria. Lee JE; Hwang GS; Lee CH; Hong YS J Agric Food Chem; 2009 Nov; 57(22):10772-83. PubMed ID: 19919120 [TBL] [Abstract][Full Text] [Related]
19. Comparative metabolic profiling to investigate the contribution of O. oeni MLF starter cultures to red wine composition. Malherbe S; Tredoux AG; Nieuwoudt HH; du Toit M J Ind Microbiol Biotechnol; 2012 Mar; 39(3):477-94. PubMed ID: 22120647 [TBL] [Abstract][Full Text] [Related]
20. Changes in the concentration of yeast-derived volatile compounds of red wine during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. Ugliano M; Moio L J Agric Food Chem; 2005 Dec; 53(26):10134-9. PubMed ID: 16366706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]