These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 27405466)
1. Optical Properties of Plasmonic Mirror-Image Nanoepsilon. Lin JY; Tsai CY; Lin PT; Hsu TE; Hsiao CF; Lee PT Nanoscale Res Lett; 2016 Dec; 11(1):327. PubMed ID: 27405466 [TBL] [Abstract][Full Text] [Related]
2. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement. Cheng ZQ; Nan F; Yang DJ; Zhong YT; Ma L; Hao ZH; Zhou L; Wang QQ Nanoscale; 2015 Jan; 7(4):1463-70. PubMed ID: 25503522 [TBL] [Abstract][Full Text] [Related]
3. Tailoring Optical Properties of a Large-Area Plasmonic Gold Nanoring Array Pattern. Kasani S; Zheng P; Wu N J Phys Chem C Nanomater Interfaces; 2018 Jun; 122(25):13443-13449. PubMed ID: 30344837 [TBL] [Abstract][Full Text] [Related]
4. Comparative investigation of sensing behaviors between gap and lattice plasmon modes in a metallic nanoring array. Liang Y; Li L; Lu M; Yuan H; Long Z; Peng W; Xu T Nanoscale; 2018 Jan; 10(2):548-555. PubMed ID: 29185577 [TBL] [Abstract][Full Text] [Related]
5. Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror. Huang Y; Ma L; Hou M; Li J; Xie Z; Zhang Z Sci Rep; 2016 Jul; 6():30011. PubMed ID: 27418039 [TBL] [Abstract][Full Text] [Related]
6. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays. Huang Y; Zhang X; Ringe E; Hou M; Ma L; Zhang Z Sci Rep; 2016 Mar; 6():23159. PubMed ID: 26983501 [TBL] [Abstract][Full Text] [Related]
7. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity. Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812 [TBL] [Abstract][Full Text] [Related]
8. Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering. Cheng HH; Chen SW; Chang YY; Chu JY; Lin DZ; Chen YP; Li JH Opt Express; 2011 Oct; 19(22):22125-41. PubMed ID: 22109056 [TBL] [Abstract][Full Text] [Related]
9. Tuning the optical response of a dimer nanoantenna using plasmonic nanoring loads. Panaretos AH; Yuwen YA; Werner DH; Mayer TS Sci Rep; 2015 May; 5():9813. PubMed ID: 25961804 [TBL] [Abstract][Full Text] [Related]
10. Plasmonic Metamaterials for Nanochemistry and Sensing. Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511 [TBL] [Abstract][Full Text] [Related]
11. Angle-Resolved Plasmonic Properties of Single Gold Nanorod Dimers. Wu J; Lu X; Zhu Q; Zhao J; Shen Q; Zhan L; Ni W Nanomicro Lett; 2014; 6(4):372-380. PubMed ID: 30464949 [TBL] [Abstract][Full Text] [Related]
12. Understanding near/far-field engineering of optical dimer antennas through geometry modification. Ding W; Bachelot R; Espiau de Lamaestre R; Macias D; Baudrion AL; Royer P Opt Express; 2009 Nov; 17(23):21228-39. PubMed ID: 19997362 [TBL] [Abstract][Full Text] [Related]
13. Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy. Yu H; Sun Q; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Misawa H ACS Nano; 2016 Nov; 10(11):10373-10381. PubMed ID: 27775321 [TBL] [Abstract][Full Text] [Related]
14. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes. Shibata K; Fujii S; Sun Q; Miura A; Ueno K J Chem Phys; 2020 Mar; 152(10):104706. PubMed ID: 32171196 [TBL] [Abstract][Full Text] [Related]
15. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials. Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837 [TBL] [Abstract][Full Text] [Related]
16. Near field excited state imaging via stimulated electron energy gain spectroscopy of localized surface plasmon resonances in plasmonic nanorod antennas. Collette R; Garfinkel DA; Hu Z; Masiello DJ; Rack PD Sci Rep; 2020 Jul; 10(1):12537. PubMed ID: 32719406 [TBL] [Abstract][Full Text] [Related]
17. Fano resonances in symmetric plasmonic split-ring/ring dimer nanostructures. Wang J; Yang L; Wang F; Liu C; Xu C; Liu Q; Liu W; Li X; Sun T; Chu PK Appl Opt; 2019 Oct; 58(29):8069-8074. PubMed ID: 31674362 [TBL] [Abstract][Full Text] [Related]
18. Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity. Liu SD; Yang Z; Liu RP; Li XY Opt Express; 2011 Aug; 19(16):15363-70. PubMed ID: 21934898 [TBL] [Abstract][Full Text] [Related]
19. Infrared plasmonic meta-modes via near-field coupling of metallic nanorods with split-ring resonators. Gutha RR; Sadeghi SM; Sharp C; Hatef A Nanotechnology; 2019 Sep; 30(39):395203. PubMed ID: 31242470 [TBL] [Abstract][Full Text] [Related]
20. Ultraviolet Interband Plasmonics With Si Nanostructures. Dong Z; Wang T; Chi X; Ho J; Tserkezis C; Yap SLK; Rusydi A; Tjiptoharsono F; Thian D; Mortensen NA; Yang JKW Nano Lett; 2019 Nov; 19(11):8040-8048. PubMed ID: 31560545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]