These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 27405468)
1. Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders. Niewiadomska-Cimicka A; Krzyżosiak A; Ye T; Podleśny-Drabiniok A; Dembélé D; Dollé P; Krężel W Mol Neurobiol; 2017 Jul; 54(5):3859-3878. PubMed ID: 27405468 [TBL] [Abstract][Full Text] [Related]
2. Retinoid regulated association of transcriptional co-regulators and the polycomb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARbeta(2), and Cyp26A1 in F9 embryonal carcinoma cells. Gillespie RF; Gudas LJ J Mol Biol; 2007 Sep; 372(2):298-316. PubMed ID: 17663992 [TBL] [Abstract][Full Text] [Related]
3. Biological functional annotation of retinoic acid alpha and beta in mouse liver based on genome-wide binding. He Y; Tsuei J; Wan YJ Am J Physiol Gastrointest Liver Physiol; 2014 Jul; 307(2):G205-18. PubMed ID: 24833708 [TBL] [Abstract][Full Text] [Related]
4. Combinatorial knockout of RARα, RARβ, and RARγ completely abrogates transcriptional responses to retinoic acid in murine embryonic stem cells. Laursen KB; Gudas LJ J Biol Chem; 2018 Jul; 293(30):11891-11900. PubMed ID: 29848550 [TBL] [Abstract][Full Text] [Related]
5. Role of Ser(289) in RARgamma and its homologous amino acid residue of RARalpha and RARbeta in the binding of retinoic acid. Zhang ZP; Shukri M; Gambone CJ; Gabriel JL; Soprano KJ; Soprano DR Arch Biochem Biophys; 2000 Aug; 380(2):339-46. PubMed ID: 10933889 [TBL] [Abstract][Full Text] [Related]
6. Retinoic acid receptors: from molecular mechanisms to cancer therapy. di Masi A; Leboffe L; De Marinis E; Pagano F; Cicconi L; Rochette-Egly C; Lo-Coco F; Ascenzi P; Nervi C Mol Aspects Med; 2015 Feb; 41():1-115. PubMed ID: 25543955 [TBL] [Abstract][Full Text] [Related]
7. Azadiradione Restores Protein Quality Control and Ameliorates the Disease Pathogenesis in a Mouse Model of Huntington's Disease. Singh BK; Vatsa N; Nelson VK; Kumar V; Kumar SS; Mandal SC; Pal M; Jana NR Mol Neurobiol; 2018 Aug; 55(8):6337-6346. PubMed ID: 29294248 [TBL] [Abstract][Full Text] [Related]
8. Retinoic acid receptor beta protects striatopallidal medium spiny neurons from mitochondrial dysfunction and neurodegeneration. Ciancia M; Rataj-Baniowska M; Zinter N; Baldassarro VA; Fraulob V; Charles AL; Alvarez R; Muramatsu SI; de Lera AR; Geny B; Dollé P; Niewiadomska-Cimicka A; Krężel W Prog Neurobiol; 2022 May; 212():102246. PubMed ID: 35151792 [TBL] [Abstract][Full Text] [Related]
9. Loss of Angelman Syndrome Protein E6AP Disrupts a Novel Antagonistic Estrogen-Retinoic Acid Transcriptional Crosstalk in Neurons. El Hokayem J; Weeber E; Nawaz Z Mol Neurobiol; 2018 Sep; 55(9):7187-7200. PubMed ID: 29388081 [TBL] [Abstract][Full Text] [Related]
10. Utilization of DR1 as true RARE in regulating the Ssm, a novel retinoic acid-target gene in the mouse testis. Han K; Song H; Moon I; Augustin R; Moley K; Rogers M; Lim H J Endocrinol; 2007 Mar; 192(3):539-51. PubMed ID: 17332523 [TBL] [Abstract][Full Text] [Related]
11. Cerebrovascular and blood-brain barrier impairments in Huntington's disease: Potential implications for its pathophysiology. Drouin-Ouellet J; Sawiak SJ; Cisbani G; Lagacé M; Kuan WL; Saint-Pierre M; Dury RJ; Alata W; St-Amour I; Mason SL; Calon F; Lacroix S; Gowland PA; Francis ST; Barker RA; Cicchetti F Ann Neurol; 2015 Aug; 78(2):160-77. PubMed ID: 25866151 [TBL] [Abstract][Full Text] [Related]
12. Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease. Tang B; Becanovic K; Desplats PA; Spencer B; Hill AM; Connolly C; Masliah E; Leavitt BR; Thomas EA Hum Mol Genet; 2012 Jul; 21(14):3097-111. PubMed ID: 22492998 [TBL] [Abstract][Full Text] [Related]
13. Unique anti-activator protein-1 activity of retinoic acid receptor beta. Lin F; Xiao D; Kolluri SK; Zhang X Cancer Res; 2000 Jun; 60(12):3271-80. PubMed ID: 10866321 [TBL] [Abstract][Full Text] [Related]
14. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease. Stanek LM; Yang W; Angus S; Sardi PS; Hayden MR; Hung GH; Bennett CF; Cheng SH; Shihabuddin LS J Huntingtons Dis; 2013; 2(2):217-28. PubMed ID: 25063516 [TBL] [Abstract][Full Text] [Related]
15. Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice. Sun Z; Wang HB; Deng YP; Lei WL; Xie JP; Meade CA; Del Mar N; Goldowitz D; Reiner A Neurobiol Dis; 2005 Dec; 20(3):907-17. PubMed ID: 15990326 [TBL] [Abstract][Full Text] [Related]
16. Neuronal identity genes regulated by super-enhancers are preferentially down-regulated in the striatum of Huntington's disease mice. Achour M; Le Gras S; Keime C; Parmentier F; Lejeune FX; Boutillier AL; Néri C; Davidson I; Merienne K Hum Mol Genet; 2015 Jun; 24(12):3481-96. PubMed ID: 25784504 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide increase in histone H2A ubiquitylation in a mouse model of Huntington's disease. McFarland KN; Das S; Sun TT; Leyfer D; Kim MO; Xia E; Sangrey GR; Kuhn A; Luthi-Carter R; Clark TW; Sadri-Vakili G; Cha JH J Huntingtons Dis; 2013; 2(3):263-77. PubMed ID: 25062675 [TBL] [Abstract][Full Text] [Related]
18. Identification and characterization of retinoic acid receptor beta2 target genes in F9 teratocarcinoma cells. Zhuang Y; Faria TN; Chambon P; Gudas LJ Mol Cancer Res; 2003 Jun; 1(8):619-30. PubMed ID: 12805409 [TBL] [Abstract][Full Text] [Related]
19. The dynamics of early-state transcriptional changes and aggregate formation in a Huntington's disease cell model. van Hagen M; Piebes DGE; de Leeuw WC; Vuist IM; van Roon-Mom WMC; Moerland PD; Verschure PJ BMC Genomics; 2017 May; 18(1):373. PubMed ID: 28499347 [TBL] [Abstract][Full Text] [Related]
20. Essential roles of retinoic acid signaling in interdigital apoptosis and control of BMP-7 expression in mouse autopods. Dupé V; Ghyselinck NB; Thomazy V; Nagy L; Davies PJ; Chambon P; Mark M Dev Biol; 1999 Apr; 208(1):30-43. PubMed ID: 10075839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]