These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27405797)

  • 1. Polarisation-based coincidence event discrimination: an in silico study towards a feasible scheme for Compton-PET.
    Toghyani M; Gillam JE; McNamara AL; Kuncic Z
    Phys Med Biol; 2016 Aug; 61(15):5803-17. PubMed ID: 27405797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards optimal imaging with PET: an in silico feasibility study.
    McNamara AL; Toghyani M; Gillam JE; Wu K; Kuncic Z
    Phys Med Biol; 2014 Dec; 59(24):7587-600. PubMed ID: 25415271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography.
    Habte F; Foudray AM; Olcott PD; Levin CS
    Phys Med Biol; 2007 Jul; 52(13):3753-72. PubMed ID: 17664575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovering the triple coincidence of non-pure positron emitters in preclinical PET.
    Lin HH; Chuang KS; Chen SY; Jan ML
    Phys Med Biol; 2016 Mar; 61(5):1904-31. PubMed ID: 26878420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compton scatter tomography in TOF-PET.
    Hemmati H; Kamali-Asl A; Ay M; Ghafarian P
    Phys Med Biol; 2017 Sep; 62(19):7641-7658. PubMed ID: 28749378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of scattered and unscattered PET coincidences using TOF and energy information.
    Conti M; Hong I; Michel C
    Phys Med Biol; 2012 Aug; 57(15):N307-17. PubMed ID: 22801215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep neural network for positioning and inter-crystal scatter identification in multiplexed PET detectors: a simulation study.
    Enríquez-Mier-Y-Terán FE; Zhou L; Meikle SR; Kyme AZ
    Phys Med Biol; 2024 Aug; 69(16):. PubMed ID: 39059440
    [No Abstract]   [Full Text] [Related]  

  • 8. Photon quantum entanglement in the MeV regime and its application in PET imaging.
    Watts DP; Bordes J; Brown JR; Cherlin A; Newton R; Allison J; Bashkanov M; Efthimiou N; Zachariou NA
    Nat Commun; 2021 May; 12(1):2646. PubMed ID: 33976168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise evaluation of Compton camera imaging for proton therapy.
    Ortega PG; Torres-Espallardo I; Cerutti F; Ferrari A; Gillam JE; Lacasta C; Llosá G; Oliver JF; Sala PR; Solevi P; Rafecas M
    Phys Med Biol; 2015 Mar; 60(5):1845-63. PubMed ID: 25658644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GATE Monte Carlo simulations for variations of an integrated PET/MR hybrid imaging system based on the Biograph mMR model.
    Aklan B; Jakoby BW; Watson CC; Braun H; Ritt P; Quick HH
    Phys Med Biol; 2015 Jun; 60(12):4731-52. PubMed ID: 26040657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positioning true coincidences that undergo inter-and intra-crystal scatter for a sub-mm resolution cadmium zinc telluride-based PET system.
    Abbaszadeh S; Chinn G; Levin CS
    Phys Med Biol; 2018 Jan; 63(2):025012. PubMed ID: 29131809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced PET resolution by combining pinhole collimation and coincidence detection.
    DiFilippo FP
    Phys Med Biol; 2015 Oct; 60(20):7969-84. PubMed ID: 26418305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of photon depth of interaction and non-collinear spread of annihilation photons on PET image spatial resolution.
    Sánchez-Crespo A; Larsson SA
    Eur J Nucl Med Mol Imaging; 2006 Aug; 33(8):940-7. PubMed ID: 16568208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors.
    Watanabe M; Saito A; Isobe T; Ote K; Yamada R; Moriya T; Omura T
    Phys Med Biol; 2017 Aug; 62(17):7148-7166. PubMed ID: 28753133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic study on factors influencing the performance of interdetector scatter recovery in small-animal PET.
    Lee S; Lee MS; Kim KY; Lee JS
    Med Phys; 2018 May; ():. PubMed ID: 29851131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical model of coincidence resolving time in TOF-PET.
    Wieczorek H; Thon A; Dey T; Khanin V; Rodnyi P
    Phys Med Biol; 2016 Jun; 61(12):4699-710. PubMed ID: 27245232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of triple coincidences in PET.
    Cal-González J; Lage E; Herranz E; Vicente E; Udias JM; Moore SC; Park MA; Dave SR; Parot V; Herraiz JL
    Phys Med Biol; 2015 Jan; 60(1):117-36. PubMed ID: 25479147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A maximum NEC criterion for Compton collimation to accurately identify true coincidences in PET.
    Chinn G; Levin CS
    IEEE Trans Med Imaging; 2011 Jul; 30(7):1341-52. PubMed ID: 21317079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gray: a ray tracing-based Monte Carlo simulator for PET.
    Freese DL; Olcott PD; Buss SR; Levin CS
    Phys Med Biol; 2018 May; 63(10):105019. PubMed ID: 29701603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A scatter-compensated crystal interference factor in component-based normalization for high-resolution whole-body PET.
    Mizuta T; Kitamura K; Ishikawa A; Ohtani A; Tanaka K
    Phys Med Biol; 2010 Jul; 55(13):3643-57. PubMed ID: 20526036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.