These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

789 related articles for article (PubMed ID: 27406001)

  • 21. Methods and consequences of including reduction in greenhouse gas emission in beef cattle multiple-trait selection.
    Barwick SA; Henzell AL; Herd RM; Walmsley BJ; Arthur PF
    Genet Sel Evol; 2019 Apr; 51(1):18. PubMed ID: 31035930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth promoting technologies reduce greenhouse gas, alcohol, and ammonia emissions from feedlot cattle.
    Stackhouse-Lawson KR; Calvo MS; Place SE; Armitage TL; Pan Y; Zhao Y; Mitloehner FM
    J Anim Sci; 2013 Nov; 91(11):5438-47. PubMed ID: 24085413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methane emission from global livestock sector during 1890-2014: Magnitude, trends and spatiotemporal patterns.
    Dangal SRS; Tian H; Zhang B; Pan S; Lu C; Yang J
    Glob Chang Biol; 2017 Oct; 23(10):4147-4161. PubMed ID: 28370720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enteric methane emissions and their response to agro-ecological and livestock production systems dynamics in Zimbabwe.
    Svinurai W; Mapanda F; Sithole D; Moyo EN; Ndidzano K; Tsiga A; Zhakata W
    Sci Total Environ; 2018 Mar; 616-617():710-719. PubMed ID: 29122353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The greenhouse gas abatement potential of productivity improving measures applied to cattle systems in a developing region.
    Salmon GR; Marshall K; Tebug SF; Missohou A; Robinson TP; MacLeod M
    Animal; 2018 Apr; 12(4):844-852. PubMed ID: 28950919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Forage use to improve environmental sustainability of ruminant production.
    Guyader J; Janzen HH; Kroebel R; Beauchemin KA
    J Anim Sci; 2016 Aug; 94(8):3147-3158. PubMed ID: 27695772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methane mitigation in ruminants: from microbe to the farm scale.
    Martin C; Morgavi DP; Doreau M
    Animal; 2010 Mar; 4(3):351-65. PubMed ID: 22443940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors affecting methane production and mitigation in ruminants.
    Shibata M; Terada F
    Anim Sci J; 2010 Feb; 81(1):2-10. PubMed ID: 20163666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Review: Strategies for enteric methane mitigation in cattle fed tropical forages.
    Ku-Vera JC; Castelán-Ortega OA; Galindo-Maldonado FA; Arango J; Chirinda N; Jiménez-Ocampo R; Valencia-Salazar SS; Flores-Santiago EJ; Montoya-Flores MD; Molina-Botero IC; Piñeiro-Vázquez AT; Arceo-Castillo JI; Aguilar-Pérez CF; Ramírez-Avilés L; Solorio-Sánchez FJ
    Animal; 2020 Sep; 14(S3):s453-s463. PubMed ID: 32807248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating livestock health measures into marginal abatement cost curves.
    Macleod M; Moran D
    Rev Sci Tech; 2017 Apr; 36(1):97-104. PubMed ID: 28926024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of mitigation technologies and management strategies for greenhouse gas and air pollutant emissions in livestock production.
    Yan X; Ying Y; Li K; Zhang Q; Wang K
    J Environ Manage; 2024 Feb; 352():120028. PubMed ID: 38219668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment.
    Hou Y; Velthof GL; Oenema O
    Glob Chang Biol; 2015 Mar; 21(3):1293-312. PubMed ID: 25330119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions.
    Patra AK
    Environ Monit Assess; 2012 Apr; 184(4):1929-52. PubMed ID: 21547374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitigating climate change: the role of domestic livestock.
    Gill M; Smith P; Wilkinson JM
    Animal; 2010 Mar; 4(3):323-33. PubMed ID: 22443938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid.
    McGinn SM; Beauchemin KA; Coates T; Colombatto D
    J Anim Sci; 2004 Nov; 82(11):3346-56. PubMed ID: 15542482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Instability of decoupling livestock greenhouse gas emissions from economic growth in livestock products in the Tibetan highland.
    Bai Y; Guo C; Li S; Degen AA; Ahmad AA; Wang W; Zhang T; Huang M; Shang Z
    J Environ Manage; 2021 Jun; 287():112334. PubMed ID: 33735676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling the trade-off between diet costs and methane emissions: A goal programming approach.
    Moraes LE; Fadel JG; Castillo AR; Casper DP; Tricarico JM; Kebreab E
    J Dairy Sci; 2015 Aug; 98(8):5557-71. PubMed ID: 25981079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of productivity in improving the environmental sustainability of ruminant production systems.
    Capper JL; Bauman DE
    Annu Rev Anim Biosci; 2013 Jan; 1():469-89. PubMed ID: 25387028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manure management for greenhouse gas mitigation.
    Petersen SO; Blanchard M; Chadwick D; Del Prado A; Edouard N; Mosquera J; Sommer SG
    Animal; 2013 Jun; 7 Suppl 2():266-82. PubMed ID: 23739469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon myopia: The urgent need for integrated social, economic and environmental action in the livestock sector.
    Harrison MT; Cullen BR; Mayberry DE; Cowie AL; Bilotto F; Badgery WB; Liu K; Davison T; Christie KM; Muleke A; Eckard RJ
    Glob Chang Biol; 2021 Nov; 27(22):5726-5761. PubMed ID: 34314548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.