These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27406170)

  • 21. Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices.
    Mondal S; Ahlawat S; Rau K; Venkataraman V; Koushika SP
    Traffic; 2011 Apr; 12(4):372-85. PubMed ID: 21199219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Moss systems biology en route: phytohormones in Physcomitrella development.
    Decker EL; Frank W; Sarnighausen E; Reski R
    Plant Biol (Stuttg); 2006 May; 8(3):397-405. PubMed ID: 16807833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Microfluidic Culture Platform to Assess Axon Degeneration.
    Yong Y; Hughes C; Deppmann C
    Methods Mol Biol; 2020; 2143():83-96. PubMed ID: 32524474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-loading and cell culture in one layer microfluidic devices.
    Wang L; Ni XF; Luo CX; Zhang ZL; Pang DW; Chen Y
    Biomed Microdevices; 2009 Jun; 11(3):679-84. PubMed ID: 19130238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphological analysis of cell growth mutants in Physcomitrella.
    Bibeau JP; Vidali L
    Methods Mol Biol; 2014; 1080():201-13. PubMed ID: 24132431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The relationship between the Young's modulus and dry etching rate of polydimethylsiloxane (PDMS).
    Fitzgerald ML; Tsai S; Bellan LM; Sappington R; Xu Y; Li D
    Biomed Microdevices; 2019 Mar; 21(1):26. PubMed ID: 30826983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip.
    Grossmann G; Meier M; Cartwright HN; Sosso D; Quake SR; Ehrhardt DW; Frommer WB
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolutionary crossroads in developmental biology: Physcomitrella patens.
    Prigge MJ; Bezanilla M
    Development; 2010 Nov; 137(21):3535-43. PubMed ID: 20940223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices.
    Khnouf R; Karasneh D; Albiss BA
    Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture.
    Puleo CM; McIntosh Ambrose W; Takezawa T; Elisseeff J; Wang TH
    Lab Chip; 2009 Nov; 9(22):3221-7. PubMed ID: 19865728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices.
    Miura T; Yokokawa R
    Dev Growth Differ; 2016 Aug; 58(6):505-15. PubMed ID: 27272910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple method for preparation of macroporous polydimethylsiloxane membrane for microfluidic chip-based isoelectric focusing applications.
    Ou J; Ren CL; Pawliszyn J
    Anal Chim Acta; 2010 Mar; 662(2):200-5. PubMed ID: 20171320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CELLS IN THE THIRD DIMENSION.
    Webb S
    Biotechniques; 2017 Mar; 62(3):93-98. PubMed ID: 28298175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The phenotype of the CRINKLY4 deletion mutant of Physcomitrella patens suggests a broad role in developmental regulation in early land plants.
    Demko V; Ako E; Perroud PF; Quatrano R; Olsen OA
    Planta; 2016 Jul; 244(1):275-84. PubMed ID: 27100110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of disposable PDMS micro cell culture analog devices with photopolymerizable hydrogel encapsulating living cells.
    Xu H; Wu J; Chu CC; Shuler ML
    Biomed Microdevices; 2012 Apr; 14(2):409-18. PubMed ID: 22160484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional patterning of PDMS microfluidic devices using integrated chemo-masks.
    Romanowsky MB; Heymann M; Abate AR; Krummel AT; Fraden S; Weitz DA
    Lab Chip; 2010 Jun; 10(12):1521-4. PubMed ID: 20454730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging Mitosis in the Moss Physcomitrella patens.
    Yamada M; Miki T; Goshima G
    Methods Mol Biol; 2016; 1413():263-82. PubMed ID: 27193855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.