These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge. Cha KJ; Kim DS Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383 [TBL] [Abstract][Full Text] [Related]
43. Reversibly-bonded microfluidic devices for stable cell culture and rapid, gentle cell extraction. Feng X; Wu Z; Cheng LKW; Xiang Y; Sugimura R; Lin X; Wu AR Lab Chip; 2024 Jul; 24(14):3546-3555. PubMed ID: 38949063 [TBL] [Abstract][Full Text] [Related]
44. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Proust H; Hoffmann B; Xie X; Yoneyama K; Schaefer DG; Yoneyama K; Nogué F; Rameau C Development; 2011 Apr; 138(8):1531-9. PubMed ID: 21367820 [TBL] [Abstract][Full Text] [Related]
45. Large-scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions. Hiss M; Laule O; Meskauskiene RM; Arif MA; Decker EL; Erxleben A; Frank W; Hanke ST; Lang D; Martin A; Neu C; Reski R; Richardt S; Schallenberg-Rüdinger M; Szövényi P; Tiko T; Wiedemann G; Wolf L; Zimmermann P; Rensing SA Plant J; 2014 Aug; 79(3):530-9. PubMed ID: 24889180 [TBL] [Abstract][Full Text] [Related]
46. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices. Nock V; Blaikie RJ; David T Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072 [TBL] [Abstract][Full Text] [Related]
47. [The moss Physcomitrella patens, a new model system for functional genomics]. Dong W; Li W; Guo GX; Zheng GC Yi Chuan; 2004 Jul; 26(4):560-6. PubMed ID: 15640062 [TBL] [Abstract][Full Text] [Related]
48. Solid phase DNA extraction on PDMS and direct amplification. Pasquardini L; Potrich C; Quaglio M; Lamberti A; Guastella S; Lunelli L; Cocuzza M; Vanzetti L; Pirri CF; Pederzolli C Lab Chip; 2011 Dec; 11(23):4029-35. PubMed ID: 21989780 [TBL] [Abstract][Full Text] [Related]
49. Removal of background signals from fluorescence thermometry measurements in PDMS microchannels using fluorescence lifetime imaging. Robinson T; Schaerli Y; Wootton R; Hollfelder F; Dunsby C; Baldwin G; Neil M; French P; deMello A Lab Chip; 2009 Dec; 9(23):3437-41. PubMed ID: 19904413 [TBL] [Abstract][Full Text] [Related]
50. Polybetaine modification of PDMS microfluidic devices to resist thrombus formation in whole blood. Zhang Z; Borenstein J; Guiney L; Miller R; Sukavaneshvar S; Loose C Lab Chip; 2013 May; 13(10):1963-8. PubMed ID: 23563730 [TBL] [Abstract][Full Text] [Related]
51. Eight types of stem cells in the life cycle of the moss Physcomitrella patens. Kofuji R; Hasebe M Curr Opin Plant Biol; 2014 Feb; 17():13-21. PubMed ID: 24507489 [TBL] [Abstract][Full Text] [Related]
52. Microfluidic platforms for generating dynamic environmental perturbations to study the responses of single yeast cells. Bisaria A; Hersen P; McClean MN Methods Mol Biol; 2014; 1205():111-29. PubMed ID: 25213242 [TBL] [Abstract][Full Text] [Related]
53. Desktop aligner for fabrication of multilayer microfluidic devices. Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409 [TBL] [Abstract][Full Text] [Related]
55. Simultaneous imaging and functional studies reveal a tight correlation between calcium and actin networks. Bascom CS; Winship LJ; Bezanilla M Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2869-E2878. PubMed ID: 29507239 [TBL] [Abstract][Full Text] [Related]
56. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Jang KJ; Suh KY Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048 [TBL] [Abstract][Full Text] [Related]
57. Bending of protonema cells in a plastid glycolate/glycerate transporter knockout line of Physcomitrella patens. Nakahara J; Takechi K; Myouga F; Moriyama Y; Sato H; Takio S; Takano H PLoS One; 2015; 10(3):e0118804. PubMed ID: 25793376 [TBL] [Abstract][Full Text] [Related]
58. The PpCMT chromomethylase affects cell growth and interacts with the homolog of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens. Dangwal M; Kapoor S; Kapoor M Plant J; 2014 Feb; 77(4):589-603. PubMed ID: 24329971 [TBL] [Abstract][Full Text] [Related]
59. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Lewpiriyawong N; Yang C; Lam YC Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920 [TBL] [Abstract][Full Text] [Related]
60. Fully integrated PDMS/SU-8/quartz microfluidic chip with a novel macroporous poly dimethylsiloxane (PDMS) membrane for isoelectric focusing of proteins using whole-channel imaging detection. Shameli SM; Elbuken C; Ou J; Ren CL; Pawliszyn J Electrophoresis; 2011 Feb; 32(3-4):333-9. PubMed ID: 21298660 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]