These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 27406224)
1. Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study. Martín de Vidales MJ; Cotillas S; Perez-Serrano JF; Llanos J; Sáez C; Cañizares P; Rodrigo MA Environ Sci Pollut Res Int; 2016 Oct; 23(19):19713-22. PubMed ID: 27406224 [TBL] [Abstract][Full Text] [Related]
2. New diamond coatings for a safer electrolytic disinfection. Gimenes Vernasqui L; de Oliveira Santiago Santos G; Isidro J; Oliveira Silva T; de Vasconcelos Lanza MR; Saez C; Gomes Ferreira N; Rodrigo Rodrigo MA Environ Sci Pollut Res Int; 2023 Nov; 30(55):117871-117880. PubMed ID: 37875760 [TBL] [Abstract][Full Text] [Related]
3. Degradation of dye Procion Red MX-5B by electrolytic and electro-irradiated technologies using diamond electrodes. Cotillas S; Clematis D; Cañizares P; Carpanese MP; Rodrigo MA; Panizza M Chemosphere; 2018 May; 199():445-452. PubMed ID: 29453071 [TBL] [Abstract][Full Text] [Related]
4. Conductive diamond sono-electrochemical disinfection (CDSED) for municipal wastewater reclamation. Llanos J; Cotillas S; Cañizares P; Rodrigo MA Ultrason Sonochem; 2015 Jan; 22():493-8. PubMed ID: 24882590 [TBL] [Abstract][Full Text] [Related]
5. Disinfection of biologically treated wastewater and prevention of biofouling by UV/electrolysis hybrid technology: influence factors and limits for domestic wastewater reuse. Haaken D; Dittmar T; Schmalz V; Worch E Water Res; 2014 Apr; 52():20-8. PubMed ID: 24447954 [TBL] [Abstract][Full Text] [Related]
6. Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. Cotillas S; de Vidales MJ; Llanos J; Sáez C; Cañizares P; Rodrigo MA J Hazard Mater; 2016 Dec; 319():93-101. PubMed ID: 26832074 [TBL] [Abstract][Full Text] [Related]
7. Electrolysis with diamond anodes: Eventually, there are refractory species! Mena IF; Cotillas S; Díaz E; Sáez C; Rodríguez JJ; Cañizares P; Mohedano ÁF; Rodrigo MA Chemosphere; 2018 Mar; 195():771-776. PubMed ID: 29289023 [TBL] [Abstract][Full Text] [Related]
8. Assessing the performance of electrochemical oxidation using DSA® and BDD anodes in the presence of UVC light. Sánchez-Montes I; Pérez JF; Sáez C; Rodrigo MA; Cañizares P; Aquino JM Chemosphere; 2020 Jan; 238():124575. PubMed ID: 31446274 [TBL] [Abstract][Full Text] [Related]
10. A wind-powered BDD electrochemical oxidation process for the removal of herbicides. Souza FL; Lanza MR; Llanos J; Sáez C; Rodrigo MA; Cañizares P J Environ Manage; 2015 Aug; 158():36-9. PubMed ID: 25950835 [TBL] [Abstract][Full Text] [Related]
11. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation. Cotillas S; Llanos J; Cañizares P; Mateo S; Rodrigo MA Water Res; 2013 Apr; 47(5):1741-50. PubMed ID: 23351433 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical Fenton-based treatment of tetracaine in synthetic and urban wastewater using active and non-active anodes. Ridruejo C; Centellas F; Cabot PL; Sirés I; Brillas E Water Res; 2018 Jan; 128():71-81. PubMed ID: 29091806 [TBL] [Abstract][Full Text] [Related]
13. Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. Martín de Vidales MJ; Millán M; Sáez C; Pérez JF; Rodrigo MA; Cañizares P Chemosphere; 2015 Oct; 136():281-8. PubMed ID: 26048815 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical degradation of Mordant Blue 13 azo dye using boron-doped diamond and dimensionally stable anodes: influence of experimental parameters and water matrix. Kenova TA; Kornienko GV; Golubtsova OA; Kornienko VL; Maksimov NG Environ Sci Pollut Res Int; 2018 Oct; 25(30):30425-30440. PubMed ID: 30159847 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of UV disinfection of urine matrixes by electrochemical oxidation. Herraiz-Carboné M; Cotillas S; Lacasa E; Cañizares P; Rodrigo MA; Sáez C J Hazard Mater; 2021 May; 410():124548. PubMed ID: 33246823 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical oxidative degradation of X-6G dye by boron-doped diamond anodes: Effect of operating parameters. Tang Y; He D; Guo Y; Qu W; Shang J; Zhou L; Pan R; Dong W Chemosphere; 2020 Nov; 258():127368. PubMed ID: 32554018 [TBL] [Abstract][Full Text] [Related]
17. Electrolytic and electro-irradiated technologies for the removal of chloramphenicol in synthetic urine with diamond anodes. Cotillas S; Lacasa E; Sáez C; Cañizares P; Rodrigo MA Water Res; 2018 Jan; 128():383-392. PubMed ID: 29126034 [TBL] [Abstract][Full Text] [Related]
18. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode. Zhu X; Ni J; Wei J; Xing X; Li H J Hazard Mater; 2011 May; 189(1-2):127-33. PubMed ID: 21377794 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes. Mascia M; Monasterio S; Vacca A; Palmas S J Hazard Mater; 2016 Dec; 319():111-20. PubMed ID: 26988900 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants. Chen L; Lei C; Li Z; Yang B; Zhang X; Lei L Chemosphere; 2018 Nov; 210():516-523. PubMed ID: 30025370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]