BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27406563)

  • 1. CtaM Is Required for Menaquinol Oxidase aa3 Function in Staphylococcus aureus.
    Hammer ND; Schurig-Briccio LA; Gerdes SY; Gennis RB; Skaar EP
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host.
    Hammer ND; Reniere ML; Cassat JE; Zhang Y; Hirsch AO; Indriati Hood M; Skaar EP
    mBio; 2013 Jul; 4(4):. PubMed ID: 23900169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manganese impairs the QoxABCD terminal oxidase leading to respiration-associated toxicity.
    Sachla AJ; Luo Y; Helmann JD
    Mol Microbiol; 2021 Sep; 116(3):729-742. PubMed ID: 34097790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. YtkA (CtaK) and YozB (CtaM) function in the biogenesis of cytochrome c oxidase in Bacillus subtilis.
    von Wachenfeldt C; Hallgren J; Hederstedt L
    Mol Microbiol; 2021 Jul; 116(1):184-199. PubMed ID: 33590545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome
    Fischer M; Falke D; Naujoks C; Sawers RG
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29784883
    [No Abstract]   [Full Text] [Related]  

  • 6. Staphylococcus aureus Coproporphyrinogen III Oxidase Is Required for Aerobic and Anaerobic Heme Synthesis.
    Choby JE; Skaar EP
    mSphere; 2019 Jul; 4(4):. PubMed ID: 31292227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function of the cytochrome bc1-aa3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption.
    Matsoso LG; Kana BD; Crellin PK; Lea-Smith DJ; Pelosi A; Powell D; Dawes SS; Rubin H; Coppel RL; Mizrahi V
    J Bacteriol; 2005 Sep; 187(18):6300-8. PubMed ID: 16159762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting the synthetic lethality between terminal respiratory oxidases to kill
    Kalia NP; Hasenoehrl EJ; Ab Rahman NB; Koh VH; Ang MLT; Sajorda DR; Hards K; Grüber G; Alonso S; Cook GM; Berney M; Pethe K
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7426-7431. PubMed ID: 28652330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia.
    Kinkel TL; Roux CM; Dunman PM; Fang FC
    mBio; 2013 Nov; 4(6):e00696-13. PubMed ID: 24222487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Both terminal oxidases contribute to fitness and virulence during organ-specific Staphylococcus aureus colonization.
    Götz F; Mayer S
    mBio; 2013 Dec; 4(6):e00976-13. PubMed ID: 24302255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The obligate respiratory supercomplex from Actinobacteria.
    Kao WC; Kleinschroth T; Nitschke W; Baymann F; Neehaul Y; Hellwig P; Richers S; Vonck J; Bott M; Hunte C
    Biochim Biophys Acta; 2016 Oct; 1857(10):1705-14. PubMed ID: 27472998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy conservation in aerobically grown Staphylococcus aureus.
    Tynecka Z; Szcześniak Z; Malm A; Los R
    Res Microbiol; 1999 Oct; 150(8):555-66. PubMed ID: 10577488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the menaquinol binding loop of mycobacterial cytochrome bd oxidase.
    Harikishore A; Chong SSM; Ragunathan P; Bates RW; Grüber G
    Mol Divers; 2021 Feb; 25(1):517-524. PubMed ID: 31939065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient-state reduction and steady-state kinetic studies of menaquinol oxidase from Bacillus subtilis, cytochrome aa3-600 nm. Spectroscopic characterization of the steady-state species.
    Mattatall NR; Cameron LM; Hill BC
    Biochemistry; 2001 Nov; 40(44):13331-41. PubMed ID: 11683643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quinol and cytochrome oxidases in the cyanobacterium Synechocystis sp. PCC 6803.
    Howitt CA; Vermaas WF
    Biochemistry; 1998 Dec; 37(51):17944-51. PubMed ID: 9922162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product.
    Cotter PA; Chepuri V; Gennis RB; Gunsalus RP
    J Bacteriol; 1990 Nov; 172(11):6333-8. PubMed ID: 2172211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome bcc-aa3 Oxidase Supercomplexes in the Aerobic Respiratory Chain of Streptomyces coelicolor A3(2).
    Falke D; Fischer M; Biefel B; Ihling C; Hammerschmidt C; Reinefeld K; Haase A; Sinz A; Sawers RG
    J Mol Microbiol Biotechnol; 2018; 28(6):255-268. PubMed ID: 30861513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production.
    Kabus A; Niebisch A; Bott M
    Appl Environ Microbiol; 2007 Feb; 73(3):861-8. PubMed ID: 17142369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic and genetic evidence for two heme-Cu-containing oxidases in Rhodobacter sphaeroides.
    Shapleigh JP; Hill JJ; Alben JO; Gennis RB
    J Bacteriol; 1992 Apr; 174(7):2338-43. PubMed ID: 1313003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Monoheme
    Lorencik K; Ekiert R; Zhu Y; McBride MJ; Gennis RB; Sarewicz M; Osyczka A
    Microbiol Spectr; 2021 Sep; 9(1):e0013521. PubMed ID: 34190594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.